Ingresa un problema...
Precálculo Ejemplos
Paso 1
Establece el argumento en mayor que para obtener el lugar donde está definida la expresión.
Paso 2
Paso 2.1
Convierte la desigualdad en una ecuación.
Paso 2.2
Usa la fórmula cuadrática para obtener las soluciones.
Paso 2.3
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 2.4
Simplifica.
Paso 2.4.1
Simplifica el numerador.
Paso 2.4.1.1
Eleva a la potencia de .
Paso 2.4.1.2
Multiplica .
Paso 2.4.1.2.1
Multiplica por .
Paso 2.4.1.2.2
Multiplica por .
Paso 2.4.1.3
Resta de .
Paso 2.4.1.4
Reescribe como .
Paso 2.4.1.5
Reescribe como .
Paso 2.4.1.6
Reescribe como .
Paso 2.4.2
Multiplica por .
Paso 2.5
Simplifica la expresión para obtener el valor de la parte de .
Paso 2.5.1
Simplifica el numerador.
Paso 2.5.1.1
Eleva a la potencia de .
Paso 2.5.1.2
Multiplica .
Paso 2.5.1.2.1
Multiplica por .
Paso 2.5.1.2.2
Multiplica por .
Paso 2.5.1.3
Resta de .
Paso 2.5.1.4
Reescribe como .
Paso 2.5.1.5
Reescribe como .
Paso 2.5.1.6
Reescribe como .
Paso 2.5.2
Multiplica por .
Paso 2.5.3
Cambia a .
Paso 2.6
Simplifica la expresión para obtener el valor de la parte de .
Paso 2.6.1
Simplifica el numerador.
Paso 2.6.1.1
Eleva a la potencia de .
Paso 2.6.1.2
Multiplica .
Paso 2.6.1.2.1
Multiplica por .
Paso 2.6.1.2.2
Multiplica por .
Paso 2.6.1.3
Resta de .
Paso 2.6.1.4
Reescribe como .
Paso 2.6.1.5
Reescribe como .
Paso 2.6.1.6
Reescribe como .
Paso 2.6.2
Multiplica por .
Paso 2.6.3
Cambia a .
Paso 2.7
Identifica el coeficiente principal.
Paso 2.7.1
El término de mayor grado en un polinomio es el término que tiene el grado más alto.
Paso 2.7.2
El coeficiente principal en un polinomio es el coeficiente del término de mayor grado.
Paso 2.8
Como no hay intersecciones reales con x y el coeficiente principal es positivo, la parábola se abre hacia arriba y siempre es mayor que .
Todos los números reales
Todos los números reales
Paso 3
El dominio son todos números reales.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4