Precálculo Ejemplos

Encontrar el dominio f(x)=1/( raíz cuadrada de 7x^2+20x-3)
Paso 1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Convierte la desigualdad en una ecuación.
Paso 2.2
Factoriza por agrupación.
Toca para ver más pasos...
Paso 2.2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Reescribe como más
Paso 2.2.1.3
Aplica la propiedad distributiva.
Paso 2.2.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 2.2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Toca para ver más pasos...
Paso 2.4.2.1
Suma a ambos lados de la ecuación.
Paso 2.4.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.4.2.2.1
Divide cada término en por .
Paso 2.4.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.4.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.4.2.2.2.1.1
Cancela el factor común.
Paso 2.4.2.2.2.1.2
Divide por .
Paso 2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resta de ambos lados de la ecuación.
Paso 2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 2.7
Usa cada raíz para crear intervalos de prueba.
Paso 2.8
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 2.8.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 2.8.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.8.1.2
Reemplaza con en la desigualdad original.
Paso 2.8.1.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 2.8.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 2.8.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.8.2.2
Reemplaza con en la desigualdad original.
Paso 2.8.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 2.8.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 2.8.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.8.3.2
Reemplaza con en la desigualdad original.
Paso 2.8.3.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 2.8.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Verdadero
Falso
Verdadero
Paso 2.9
La solución consiste en todos los intervalos verdaderos.
o
o
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Resuelve
Toca para ver más pasos...
Paso 4.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 4.2
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Paso 4.2.1
Usa para reescribir como .
Paso 4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 4.2.2.1.1
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 4.2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.2.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.2.1.1.2.1
Cancela el factor común.
Paso 4.2.2.1.1.2.2
Reescribe la expresión.
Paso 4.2.2.1.2
Simplifica.
Paso 4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.3
Resuelve
Toca para ver más pasos...
Paso 4.3.1
Factoriza por agrupación.
Toca para ver más pasos...
Paso 4.3.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 4.3.1.1.1
Factoriza de .
Paso 4.3.1.1.2
Reescribe como más
Paso 4.3.1.1.3
Aplica la propiedad distributiva.
Paso 4.3.1.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 4.3.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.3.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.3.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4.3.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4.3.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.3.3.1
Establece igual a .
Paso 4.3.3.2
Resuelve en .
Toca para ver más pasos...
Paso 4.3.3.2.1
Suma a ambos lados de la ecuación.
Paso 4.3.3.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.3.3.2.2.1
Divide cada término en por .
Paso 4.3.3.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.3.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.3.2.2.2.1.1
Cancela el factor común.
Paso 4.3.3.2.2.2.1.2
Divide por .
Paso 4.3.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.3.4.1
Establece igual a .
Paso 4.3.4.2
Resta de ambos lados de la ecuación.
Paso 4.3.5
La solución final comprende todos los valores que hacen verdadera.
Paso 5
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 6