Precálculo Ejemplos

Hallar el vértice f(x)=x^2-6x+k
Paso 1
Obtén la ecuación ordinaria de la hipérbola.
Toca para ver más pasos...
Paso 1.1
Mueve todos los términos que contengan las variables al lado izquierdo de la ecuación
Toca para ver más pasos...
Paso 1.1.1
Resta de ambos lados de la ecuación.
Paso 1.1.2
Suma a ambos lados de la ecuación.
Paso 1.1.3
Resta de ambos lados de la ecuación.
Paso 1.1.4
Mueve .
Paso 1.1.5
Mueve .
Paso 1.2
Completa el cuadrado de .
Toca para ver más pasos...
Paso 1.2.1
Usa la forma , para obtener los valores de , y .
Paso 1.2.2
Considera la forma de vértice de una parábola.
Paso 1.2.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.3.1
Sustituye los valores de y en la fórmula .
Paso 1.2.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.3.2.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.2.3.2.1.1
Factoriza de .
Paso 1.2.3.2.1.2
Mueve el negativo del denominador de .
Paso 1.2.3.2.2
Multiplica por .
Paso 1.2.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.4.1
Sustituye los valores de , y en la fórmula .
Paso 1.2.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.4.2.1.1
Eleva a la potencia de .
Paso 1.2.4.2.1.2
Multiplica por .
Paso 1.2.4.2.1.3
Divide por .
Paso 1.2.4.2.1.4
Multiplica por .
Paso 1.2.4.2.2
Suma y .
Paso 1.2.5
Sustituye los valores de , y en la forma de vértice .
Paso 1.3
Sustituye por en la ecuación .
Paso 1.4
Mueve al lado derecho de la ecuación mediante la suma de a ambos lados.
Paso 1.5
Resta de .
Paso 2
Esta es la forma de una hipérbola. Usa esta forma para determinar los valores usados a fin de obtener los vértices y las asíntotas de la hipérbola.
Paso 3
Haz coincidir los valores de esta hipérbola con los de la ecuación ordinaria. La variable representa el desplazamiento de x desde el origen, representa el desplazamiento de y desde el origen, .
Paso 4
El centro de una hipérbola sigue la forma de . Sustituye los valores de y .
Paso 5
Obtén , la distancia desde el centro hasta un foco.
Toca para ver más pasos...
Paso 5.1
Obtén la distancia desde el centro hasta un foco de la hipérbola con la siguiente fórmula.
Paso 5.2
Sustituye los valores de y en la fórmula.
Paso 5.3
Simplifica.
Toca para ver más pasos...
Paso 5.3.1
Uno elevado a cualquier potencia es uno.
Paso 5.3.2
Uno elevado a cualquier potencia es uno.
Paso 5.3.3
Suma y .
Paso 6
Obtén los vértices.
Toca para ver más pasos...
Paso 6.1
El primer vértice de una hipérbola puede obtenerse al sumar a .
Paso 6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 6.3
El segundo vértice de una hipérbola puede obtenerse mediante la resta de de .
Paso 6.4
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 6.5
Los vértices de una hipérbola siguen la forma de . Las hipérbolas tienen dos vértices.
Paso 7
Obtén los focos.
Toca para ver más pasos...
Paso 7.1
El primer foco de una hipérbola puede obtenerse al sumar a .
Paso 7.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7.3
El segundo foco de una hipérbola puede obtenerse mediante la resta de de .
Paso 7.4
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7.5
Los focos de una hipérbola siguen la forma de . Las hipérbolas tienen dos focos.
Paso 8
Obtén el parámetro focal.
Toca para ver más pasos...
Paso 8.1
Obtén el valor del parámetro focal de la hipérbola con la siguiente fórmula.
Paso 8.2
Sustituye los valores de y en la fórmula.
Paso 8.3
Simplifica.
Toca para ver más pasos...
Paso 8.3.1
Uno elevado a cualquier potencia es uno.
Paso 8.3.2
Multiplica por .
Paso 8.3.3
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 8.3.3.1
Multiplica por .
Paso 8.3.3.2
Eleva a la potencia de .
Paso 8.3.3.3
Eleva a la potencia de .
Paso 8.3.3.4
Usa la regla de la potencia para combinar exponentes.
Paso 8.3.3.5
Suma y .
Paso 8.3.3.6
Reescribe como .
Toca para ver más pasos...
Paso 8.3.3.6.1
Usa para reescribir como .
Paso 8.3.3.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 8.3.3.6.3
Combina y .
Paso 8.3.3.6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 8.3.3.6.4.1
Cancela el factor común.
Paso 8.3.3.6.4.2
Reescribe la expresión.
Paso 8.3.3.6.5
Evalúa el exponente.
Paso 9
Las asíntotas siguen la forma porque esta hipérbola abre hacia arriba y hacia abajo.
Paso 10
Simplifica para obtener la primera asíntota.
Toca para ver más pasos...
Paso 10.1
Elimina los paréntesis.
Paso 10.2
Simplifica .
Toca para ver más pasos...
Paso 10.2.1
Suma y .
Paso 10.2.2
Multiplica por .
Paso 10.2.3
Multiplica por .
Paso 11
Simplifica para obtener la segunda asíntota.
Toca para ver más pasos...
Paso 11.1
Elimina los paréntesis.
Paso 11.2
Simplifica .
Toca para ver más pasos...
Paso 11.2.1
Simplifica la expresión.
Toca para ver más pasos...
Paso 11.2.1.1
Suma y .
Paso 11.2.1.2
Multiplica por .
Paso 11.2.2
Aplica la propiedad distributiva.
Paso 11.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 11.2.3.1
Reescribe como .
Paso 11.2.3.2
Multiplica por .
Paso 12
Esta hipérbola tiene dos asíntotas.
Paso 13
Estos valores representan los valores importantes para la representación gráfica y el análisis de una hipérbola.
Centro:
Vértices:
Focos:
Excentricidad:
Parámetro focal:
Asíntotas: ,
Paso 14