Precálculo Ejemplos

Encontrar el dominio ((x^2-9)/(y^2-25))÷((2x^2-6x)/(3y^2-15y))+(3-1.5y)/(y+5)
Paso 1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Suma a ambos lados de la ecuación.
Paso 2.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.3
Simplifica .
Toca para ver más pasos...
Paso 2.3.1
Reescribe como .
Paso 2.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 2.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Resuelve
Toca para ver más pasos...
Paso 4.1
Factoriza de .
Toca para ver más pasos...
Paso 4.1.1
Factoriza de .
Paso 4.1.2
Factoriza de .
Paso 4.1.3
Factoriza de .
Paso 4.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4.3
Establece igual a .
Paso 4.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.4.1
Establece igual a .
Paso 4.4.2
Suma a ambos lados de la ecuación.
Paso 4.5
La solución final comprende todos los valores que hacen verdadera.
Paso 5
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 6
Resuelve
Toca para ver más pasos...
Paso 6.1
Establece el numerador igual a cero.
Paso 6.2
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 6.2.1
Factoriza de .
Toca para ver más pasos...
Paso 6.2.1.1
Factoriza de .
Paso 6.2.1.2
Factoriza de .
Paso 6.2.1.3
Factoriza de .
Paso 6.2.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6.2.3
Establece igual a .
Paso 6.2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 6.2.4.1
Establece igual a .
Paso 6.2.4.2
Suma a ambos lados de la ecuación.
Paso 6.2.5
La solución final comprende todos los valores que hacen verdadera.
Paso 7
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 8
Resta de ambos lados de la ecuación.
Paso 9
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos: