Preálgebra Ejemplos

Resolver usando las propiedades de la raíz cuadrada. 5 raíz cuadrada de 5x+29=x+3
Paso 1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 2
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Paso 2.1
Usa para reescribir como .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Simplifica .
Toca para ver más pasos...
Paso 2.2.1.1
Aplica la regla del producto a .
Paso 2.2.1.2
Eleva a la potencia de .
Paso 2.2.1.3
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.2.1.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.3.2.1
Cancela el factor común.
Paso 2.2.1.3.2.2
Reescribe la expresión.
Paso 2.2.1.4
Simplifica.
Paso 2.2.1.5
Aplica la propiedad distributiva.
Paso 2.2.1.6
Multiplica.
Toca para ver más pasos...
Paso 2.2.1.6.1
Multiplica por .
Paso 2.2.1.6.2
Multiplica por .
Paso 2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Simplifica .
Toca para ver más pasos...
Paso 2.3.1.1
Reescribe como .
Paso 2.3.1.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 2.3.1.2.1
Aplica la propiedad distributiva.
Paso 2.3.1.2.2
Aplica la propiedad distributiva.
Paso 2.3.1.2.3
Aplica la propiedad distributiva.
Paso 2.3.1.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 2.3.1.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.3.1.3.1.1
Multiplica por .
Paso 2.3.1.3.1.2
Mueve a la izquierda de .
Paso 2.3.1.3.1.3
Multiplica por .
Paso 2.3.1.3.2
Suma y .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Como está en el lado derecho de la ecuación, cambia los lados para que quede en el lado izquierdo de la ecuación.
Paso 3.2
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.2.1
Resta de ambos lados de la ecuación.
Paso 3.2.2
Resta de .
Paso 3.3
Mueve todos los términos al lado izquierdo de la ecuación y simplifica.
Toca para ver más pasos...
Paso 3.3.1
Resta de ambos lados de la ecuación.
Paso 3.3.2
Resta de .
Paso 3.4
Usa la fórmula cuadrática para obtener las soluciones.
Paso 3.5
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 3.6
Simplifica.
Toca para ver más pasos...
Paso 3.6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.6.1.1
Eleva a la potencia de .
Paso 3.6.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.6.1.2.1
Multiplica por .
Paso 3.6.1.2.2
Multiplica por .
Paso 3.6.1.3
Suma y .
Paso 3.6.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.6.1.4.1
Factoriza de .
Paso 3.6.1.4.2
Reescribe como .
Paso 3.6.1.5
Retira los términos de abajo del radical.
Paso 3.6.2
Multiplica por .
Paso 3.7
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 3.7.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.7.1.1
Eleva a la potencia de .
Paso 3.7.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.7.1.2.1
Multiplica por .
Paso 3.7.1.2.2
Multiplica por .
Paso 3.7.1.3
Suma y .
Paso 3.7.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.7.1.4.1
Factoriza de .
Paso 3.7.1.4.2
Reescribe como .
Paso 3.7.1.5
Retira los términos de abajo del radical.
Paso 3.7.2
Multiplica por .
Paso 3.7.3
Cambia a .
Paso 3.8
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 3.8.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.8.1.1
Eleva a la potencia de .
Paso 3.8.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.8.1.2.1
Multiplica por .
Paso 3.8.1.2.2
Multiplica por .
Paso 3.8.1.3
Suma y .
Paso 3.8.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.8.1.4.1
Factoriza de .
Paso 3.8.1.4.2
Reescribe como .
Paso 3.8.1.5
Retira los términos de abajo del radical.
Paso 3.8.2
Multiplica por .
Paso 3.8.3
Cambia a .
Paso 3.9
La respuesta final es la combinación de ambas soluciones.
Paso 4
Excluye las soluciones que no hagan que sea verdadera.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: