Ingresa un problema...
Preálgebra Ejemplos
Paso 1
Paso 1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Paso 1.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 1.4
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 1.5
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 1.6
Los factores para son , que es multiplicada una por la otra veces.
ocurre veces.
Paso 1.7
El factor para es en sí mismo.
ocurre vez.
Paso 1.8
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 1.9
Multiplica por .
Paso 2
Paso 2.1
Multiplica cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Paso 2.2.1
Cancela el factor común de .
Paso 2.2.1.1
Cancela el factor común.
Paso 2.2.1.2
Reescribe la expresión.
Paso 2.3
Simplifica el lado derecho.
Paso 2.3.1
Cancela el factor común de .
Paso 2.3.1.1
Factoriza de .
Paso 2.3.1.2
Cancela el factor común.
Paso 2.3.1.3
Reescribe la expresión.
Paso 3
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Resta de ambos lados de la ecuación.
Paso 3.3
Factoriza de .
Paso 3.3.1
Factoriza de .
Paso 3.3.2
Factoriza de .
Paso 3.3.3
Factoriza de .
Paso 3.3.4
Factoriza de .
Paso 3.3.5
Factoriza de .
Paso 3.4
Divide cada término en por y simplifica.
Paso 3.4.1
Divide cada término en por .
Paso 3.4.2
Simplifica el lado izquierdo.
Paso 3.4.2.1
Cancela el factor común de .
Paso 3.4.2.1.1
Cancela el factor común.
Paso 3.4.2.1.2
Divide por .
Paso 3.4.3
Simplifica el lado derecho.
Paso 3.4.3.1
Divide por .
Paso 3.5
Usa la fórmula cuadrática para obtener las soluciones.
Paso 3.6
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 3.7
Simplifica.
Paso 3.7.1
Simplifica el numerador.
Paso 3.7.1.1
Eleva a la potencia de .
Paso 3.7.1.2
Multiplica .
Paso 3.7.1.2.1
Multiplica por .
Paso 3.7.1.2.2
Multiplica por .
Paso 3.7.1.3
Suma y .
Paso 3.7.1.4
Reescribe como .
Paso 3.7.1.4.1
Factoriza de .
Paso 3.7.1.4.2
Reescribe como .
Paso 3.7.1.5
Retira los términos de abajo del radical.
Paso 3.7.2
Multiplica por .
Paso 3.7.3
Simplifica .
Paso 3.8
Simplifica la expresión para obtener el valor de la parte de .
Paso 3.8.1
Simplifica el numerador.
Paso 3.8.1.1
Eleva a la potencia de .
Paso 3.8.1.2
Multiplica .
Paso 3.8.1.2.1
Multiplica por .
Paso 3.8.1.2.2
Multiplica por .
Paso 3.8.1.3
Suma y .
Paso 3.8.1.4
Reescribe como .
Paso 3.8.1.4.1
Factoriza de .
Paso 3.8.1.4.2
Reescribe como .
Paso 3.8.1.5
Retira los términos de abajo del radical.
Paso 3.8.2
Multiplica por .
Paso 3.8.3
Simplifica .
Paso 3.8.4
Cambia a .
Paso 3.8.5
Reescribe como .
Paso 3.8.6
Factoriza de .
Paso 3.8.7
Factoriza de .
Paso 3.8.8
Mueve el negativo al frente de la fracción.
Paso 3.9
Simplifica la expresión para obtener el valor de la parte de .
Paso 3.9.1
Simplifica el numerador.
Paso 3.9.1.1
Eleva a la potencia de .
Paso 3.9.1.2
Multiplica .
Paso 3.9.1.2.1
Multiplica por .
Paso 3.9.1.2.2
Multiplica por .
Paso 3.9.1.3
Suma y .
Paso 3.9.1.4
Reescribe como .
Paso 3.9.1.4.1
Factoriza de .
Paso 3.9.1.4.2
Reescribe como .
Paso 3.9.1.5
Retira los términos de abajo del radical.
Paso 3.9.2
Multiplica por .
Paso 3.9.3
Simplifica .
Paso 3.9.4
Cambia a .
Paso 3.9.5
Reescribe como .
Paso 3.9.6
Factoriza de .
Paso 3.9.7
Factoriza de .
Paso 3.9.8
Mueve el negativo al frente de la fracción.
Paso 3.10
La respuesta final es la combinación de ambas soluciones.
Paso 4
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: