Ingresa un problema...
Preálgebra Ejemplos
Paso 1
Paso 1.1
Aísla al lado izquierdo de la ecuación.
Paso 1.1.1
Combina y .
Paso 1.1.2
Reordena los términos.
Paso 1.2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 1.3
Como el valor de es positivo, la parábola se abre hacia arriba.
Abre hacia arriba
Paso 1.4
Obtén el vértice .
Paso 1.5
Obtén , la distancia desde el vértice hasta el foco.
Paso 1.5.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 1.5.2
Sustituye el valor de en la fórmula.
Paso 1.5.3
Simplifica.
Paso 1.5.3.1
Combina y .
Paso 1.5.3.2
Simplifica mediante la división de números.
Paso 1.5.3.2.1
Divide por .
Paso 1.5.3.2.2
Divide por .
Paso 1.6
Obtén el foco.
Paso 1.6.1
El foco de una parábola puede obtenerse al sumar a la coordenada y si la parábola abre hacia arriba o hacia abajo.
Paso 1.6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 1.7
Obtén el eje de simetría mediante la obtención de la línea que pasa por el vértice y el foco.
Paso 1.8
Obtén la directriz.
Paso 1.8.1
La directriz de una parábola es la recta horizontal que se obtiene al restar de la coordenada y del vértice si la parábola abre hacia arriba o hacia abajo.
Paso 1.8.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 1.9
Usa las propiedades de la parábola para analizar y graficar la parábola.
Dirección: abre hacia arriba
Vértice:
Foco:
Eje de simetría:
Directriz:
Dirección: abre hacia arriba
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 2
Paso 2.1
Reemplaza la variable con en la expresión.
Paso 2.2
Simplifica el resultado.
Paso 2.2.1
Simplifica cada término.
Paso 2.2.1.1
Eleva a la potencia de .
Paso 2.2.1.2
Divide por .
Paso 2.2.1.3
Multiplica por .
Paso 2.2.2
Simplifica mediante suma y resta.
Paso 2.2.2.1
Resta de .
Paso 2.2.2.2
Suma y .
Paso 2.2.3
La respuesta final es .
Paso 2.3
El valor de en es .
Paso 2.4
Reemplaza la variable con en la expresión.
Paso 2.5
Simplifica el resultado.
Paso 2.5.1
Simplifica cada término.
Paso 2.5.1.1
Eleva a la potencia de .
Paso 2.5.1.2
Multiplica por .
Paso 2.5.2
Obtén el denominador común
Paso 2.5.2.1
Escribe como una fracción con el denominador .
Paso 2.5.2.2
Multiplica por .
Paso 2.5.2.3
Multiplica por .
Paso 2.5.2.4
Escribe como una fracción con el denominador .
Paso 2.5.2.5
Multiplica por .
Paso 2.5.2.6
Multiplica por .
Paso 2.5.3
Combina los numeradores sobre el denominador común.
Paso 2.5.4
Simplifica cada término.
Paso 2.5.4.1
Multiplica por .
Paso 2.5.4.2
Multiplica por .
Paso 2.5.5
Simplifica mediante suma y resta.
Paso 2.5.5.1
Resta de .
Paso 2.5.5.2
Suma y .
Paso 2.5.6
La respuesta final es .
Paso 2.6
El valor de en es .
Paso 2.7
Reemplaza la variable con en la expresión.
Paso 2.8
Simplifica el resultado.
Paso 2.8.1
Simplifica cada término.
Paso 2.8.1.1
Eleva a la potencia de .
Paso 2.8.1.2
Divide por .
Paso 2.8.1.3
Multiplica por .
Paso 2.8.2
Simplifica mediante suma y resta.
Paso 2.8.2.1
Resta de .
Paso 2.8.2.2
Suma y .
Paso 2.8.3
La respuesta final es .
Paso 2.9
El valor de en es .
Paso 2.10
Reemplaza la variable con en la expresión.
Paso 2.11
Simplifica el resultado.
Paso 2.11.1
Simplifica cada término.
Paso 2.11.1.1
Eleva a la potencia de .
Paso 2.11.1.2
Multiplica por .
Paso 2.11.2
Obtén el denominador común
Paso 2.11.2.1
Escribe como una fracción con el denominador .
Paso 2.11.2.2
Multiplica por .
Paso 2.11.2.3
Multiplica por .
Paso 2.11.2.4
Escribe como una fracción con el denominador .
Paso 2.11.2.5
Multiplica por .
Paso 2.11.2.6
Multiplica por .
Paso 2.11.3
Combina los numeradores sobre el denominador común.
Paso 2.11.4
Simplifica cada término.
Paso 2.11.4.1
Multiplica por .
Paso 2.11.4.2
Multiplica por .
Paso 2.11.5
Simplifica mediante suma y resta.
Paso 2.11.5.1
Resta de .
Paso 2.11.5.2
Suma y .
Paso 2.11.6
La respuesta final es .
Paso 2.12
El valor de en es .
Paso 2.13
Grafica la parábola mediante sus propiedades y los puntos seleccionados.
Paso 3
Grafica la parábola mediante sus propiedades y los puntos seleccionados.
Dirección: abre hacia arriba
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 4