Ingresa un problema...
Preálgebra Ejemplos
Paso 1
Paso 1.1
Aísla al lado izquierdo de la ecuación.
Paso 1.1.1
Combina y .
Paso 1.1.2
Reordena los términos.
Paso 1.2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 1.3
Como el valor de es negativo, la parábola se abre hacia abajo.
Abre hacia abajo
Paso 1.4
Obtén el vértice .
Paso 1.5
Obtén , la distancia desde el vértice hasta el foco.
Paso 1.5.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 1.5.2
Sustituye el valor de en la fórmula.
Paso 1.5.3
Simplifica.
Paso 1.5.3.1
Cancela el factor común de y .
Paso 1.5.3.1.1
Reescribe como .
Paso 1.5.3.1.2
Mueve el negativo al frente de la fracción.
Paso 1.5.3.2
Combina y .
Paso 1.5.3.3
Divide por .
Paso 1.6
Obtén el foco.
Paso 1.6.1
El foco de una parábola puede obtenerse al sumar a la coordenada y si la parábola abre hacia arriba o hacia abajo.
Paso 1.6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 1.7
Obtén el eje de simetría mediante la obtención de la línea que pasa por el vértice y el foco.
Paso 1.8
Obtén la directriz.
Paso 1.8.1
La directriz de una parábola es la recta horizontal que se obtiene al restar de la coordenada y del vértice si la parábola abre hacia arriba o hacia abajo.
Paso 1.8.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 1.9
Usa las propiedades de la parábola para analizar y graficar la parábola.
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 2
Paso 2.1
Reemplaza la variable con en la expresión.
Paso 2.2
Simplifica el resultado.
Paso 2.2.1
Combina los numeradores sobre el denominador común.
Paso 2.2.2
Simplifica cada término.
Paso 2.2.2.1
Eleva a la potencia de .
Paso 2.2.2.2
Multiplica por .
Paso 2.2.3
Resta de .
Paso 2.2.4
Simplifica cada término.
Paso 2.2.4.1
Multiplica por .
Paso 2.2.4.2
Divide por .
Paso 2.2.5
Resta de .
Paso 2.2.6
La respuesta final es .
Paso 2.3
El valor de en es .
Paso 2.4
Reemplaza la variable con en la expresión.
Paso 2.5
Simplifica el resultado.
Paso 2.5.1
Combina los numeradores sobre el denominador común.
Paso 2.5.2
Simplifica cada término.
Paso 2.5.2.1
Eleva a la potencia de .
Paso 2.5.2.2
Multiplica por .
Paso 2.5.3
Resta de .
Paso 2.5.4
Simplifica cada término.
Paso 2.5.4.1
Multiplica por .
Paso 2.5.4.2
Mueve el negativo al frente de la fracción.
Paso 2.5.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.5.6
Combina y .
Paso 2.5.7
Combina los numeradores sobre el denominador común.
Paso 2.5.8
Simplifica el numerador.
Paso 2.5.8.1
Multiplica por .
Paso 2.5.8.2
Resta de .
Paso 2.5.9
Mueve el negativo al frente de la fracción.
Paso 2.5.10
La respuesta final es .
Paso 2.6
El valor de en es .
Paso 2.7
Reemplaza la variable con en la expresión.
Paso 2.8
Simplifica el resultado.
Paso 2.8.1
Combina los numeradores sobre el denominador común.
Paso 2.8.2
Simplifica cada término.
Paso 2.8.2.1
Uno elevado a cualquier potencia es uno.
Paso 2.8.2.2
Multiplica por .
Paso 2.8.3
Resta de .
Paso 2.8.4
Simplifica cada término.
Paso 2.8.4.1
Multiplica por .
Paso 2.8.4.2
Divide por .
Paso 2.8.5
Resta de .
Paso 2.8.6
La respuesta final es .
Paso 2.9
El valor de en es .
Paso 2.10
Reemplaza la variable con en la expresión.
Paso 2.11
Simplifica el resultado.
Paso 2.11.1
Combina los numeradores sobre el denominador común.
Paso 2.11.2
Simplifica cada término.
Paso 2.11.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 2.11.2.2
Multiplica por .
Paso 2.11.3
Resta de .
Paso 2.11.4
Simplifica cada término.
Paso 2.11.4.1
Multiplica por .
Paso 2.11.4.2
Mueve el negativo al frente de la fracción.
Paso 2.11.5
Resta de .
Paso 2.11.6
La respuesta final es .
Paso 2.12
El valor de en es .
Paso 2.13
Grafica la parábola mediante sus propiedades y los puntos seleccionados.
Paso 3
Grafica la parábola mediante sus propiedades y los puntos seleccionados.
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 4