Ingresa un problema...
Preálgebra Ejemplos
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Suma a ambos lados de la ecuación.
Paso 1.3
Resta de ambos lados de la ecuación.
Paso 1.4
Simplifica cada término.
Paso 1.4.1
Aplica la propiedad distributiva.
Paso 1.4.2
Multiplica por .
Paso 1.4.3
Aplica la propiedad distributiva.
Paso 1.4.4
Multiplica por .
Paso 1.4.5
Aplica la propiedad distributiva.
Paso 1.5
Mueve .
Paso 1.6
Mueve .
Paso 1.7
Mueve .
Paso 2
Esta es la forma de una hipérbola. Usa esta forma para determinar los valores usados a fin de obtener los vértices y las asíntotas de la hipérbola.
Paso 3
Haz coincidir los valores de esta hipérbola con los de la ecuación ordinaria. La variable representa el desplazamiento de x desde el origen, representa el desplazamiento de y desde el origen, .
Paso 4
El centro de una hipérbola sigue la forma de . Sustituye los valores de y .
Paso 5
Paso 5.1
Obtén la distancia desde el centro hasta un foco de la hipérbola con la siguiente fórmula.
Paso 5.2
Sustituye los valores de y en la fórmula.
Paso 5.3
Simplifica.
Paso 5.3.1
Uno elevado a cualquier potencia es uno.
Paso 5.3.2
Uno elevado a cualquier potencia es uno.
Paso 5.3.3
Suma y .
Paso 6
Paso 6.1
El primer vértice de una hipérbola puede obtenerse al sumar a .
Paso 6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 6.3
El segundo vértice de una hipérbola puede obtenerse mediante la resta de de .
Paso 6.4
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 6.5
Los vértices de una hipérbola siguen la forma de . Las hipérbolas tienen dos vértices.
Paso 7
Paso 7.1
El primer foco de una hipérbola puede obtenerse al sumar a .
Paso 7.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7.3
El segundo foco de una hipérbola puede obtenerse mediante la resta de de .
Paso 7.4
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7.5
Los focos de una hipérbola siguen la forma de . Las hipérbolas tienen dos focos.
Paso 8
Paso 8.1
Obtén el valor del parámetro focal de la hipérbola con la siguiente fórmula.
Paso 8.2
Sustituye los valores de y en la fórmula.
Paso 8.3
Simplifica.
Paso 8.3.1
Uno elevado a cualquier potencia es uno.
Paso 8.3.2
Multiplica por .
Paso 8.3.3
Combina y simplifica el denominador.
Paso 8.3.3.1
Multiplica por .
Paso 8.3.3.2
Eleva a la potencia de .
Paso 8.3.3.3
Eleva a la potencia de .
Paso 8.3.3.4
Usa la regla de la potencia para combinar exponentes.
Paso 8.3.3.5
Suma y .
Paso 8.3.3.6
Reescribe como .
Paso 8.3.3.6.1
Usa para reescribir como .
Paso 8.3.3.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 8.3.3.6.3
Combina y .
Paso 8.3.3.6.4
Cancela el factor común de .
Paso 8.3.3.6.4.1
Cancela el factor común.
Paso 8.3.3.6.4.2
Reescribe la expresión.
Paso 8.3.3.6.5
Evalúa el exponente.
Paso 9
Las asíntotas siguen la forma porque esta hipérbola abre hacia la izquierda y la derecha.
Paso 10
Paso 10.1
Suma y .
Paso 10.2
Multiplica por .
Paso 11
Paso 11.1
Suma y .
Paso 11.2
Reescribe como .
Paso 12
Esta hipérbola tiene dos asíntotas.
Paso 13
Estos valores representan los valores importantes para la representación gráfica y el análisis de una hipérbola.
Centro:
Vértices:
Focos:
Excentricidad:
Parámetro focal:
Asíntotas: ,
Paso 14