Ingresa un problema...
Álgebra lineal Ejemplos
[100110111]y=[123321]⎡⎢⎣100110111⎤⎥⎦y=⎡⎢⎣123321⎤⎥⎦
Paso 1
Paso 1.1
Reescribe.
|100110111|∣∣
∣∣100110111∣∣
∣∣
Paso 1.2
Find the determinant.
Paso 1.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Paso 1.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Paso 1.2.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Paso 1.2.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1011|∣∣∣1011∣∣∣
Paso 1.2.1.4
Multiply element a11a11 by its cofactor.
1|1011|1∣∣∣1011∣∣∣
Paso 1.2.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1011|∣∣∣1011∣∣∣
Paso 1.2.1.6
Multiply element a12a12 by its cofactor.
0|1011|0∣∣∣1011∣∣∣
Paso 1.2.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1111|∣∣∣1111∣∣∣
Paso 1.2.1.8
Multiply element a13a13 by its cofactor.
0|1111|0∣∣∣1111∣∣∣
Paso 1.2.1.9
Add the terms together.
1|1011|+0|1011|+0|1111|1∣∣∣1011∣∣∣+0∣∣∣1011∣∣∣+0∣∣∣1111∣∣∣
1|1011|+0|1011|+0|1111|1∣∣∣1011∣∣∣+0∣∣∣1011∣∣∣+0∣∣∣1111∣∣∣
Paso 1.2.2
Multiplica 00 por |1011|∣∣∣1011∣∣∣.
1|1011|+0+0|1111|1∣∣∣1011∣∣∣+0+0∣∣∣1111∣∣∣
Paso 1.2.3
Multiplica 00 por |1111|∣∣∣1111∣∣∣.
1|1011|+0+01∣∣∣1011∣∣∣+0+0
Paso 1.2.4
Evalúa |1011|∣∣∣1011∣∣∣.
Paso 1.2.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(1⋅1-1⋅0)+0+01(1⋅1−1⋅0)+0+0
Paso 1.2.4.2
Simplifica el determinante.
Paso 1.2.4.2.1
Multiplica 11 por 11.
1(1-1⋅0)+0+01(1−1⋅0)+0+0
Paso 1.2.4.2.2
Resta 00 de 11.
1⋅1+0+01⋅1+0+0
1⋅1+0+01⋅1+0+0
1⋅1+0+01⋅1+0+0
Paso 1.2.5
Simplifica el determinante.
Paso 1.2.5.1
Multiplica 11 por 11.
1+0+01+0+0
Paso 1.2.5.2
Suma 11 y 00.
1+01+0
Paso 1.2.5.3
Suma 11 y 00.
11
11
11
Paso 1.3
Since the determinant is non-zero, the inverse exists.
Paso 1.4
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[100100110010111001]⎡⎢⎣100100110010111001⎤⎥⎦
Paso 1.5
Obtén la forma escalonada reducida por filas.
Paso 1.5.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Paso 1.5.1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1001001-11-00-00-11-00-0111001]⎡⎢⎣1001001−11−00−00−11−00−0111001⎤⎥⎦
Paso 1.5.1.2
Simplifica R2.
[100100010-110111001]
[100100010-110111001]
Paso 1.5.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Paso 1.5.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[100100010-1101-11-01-00-10-01-0]
Paso 1.5.2.2
Simplifica R3.
[100100010-110011-101]
[100100010-110011-101]
Paso 1.5.3
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Paso 1.5.3.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[100100010-1100-01-11-0-1+10-11-0]
Paso 1.5.3.2
Simplifica R3.
[100100010-1100010-11]
[100100010-1100010-11]
[100100010-1100010-11]
Paso 1.6
The right half of the reduced row echelon form is the inverse.
[100-1100-11]
[100-1100-11]
Paso 2
Multiply both sides by the inverse of [100110111].
[100-1100-11][100110111]y=[100-1100-11][123321]
Paso 3
Paso 3.1
Multiplica [100-1100-11][100110111].
Paso 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Paso 3.1.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
[1⋅1+0⋅1+0⋅11⋅0+0⋅1+0⋅11⋅0+0⋅0+0⋅1-1⋅1+1⋅1+0⋅1-0+1⋅1+0⋅1-0+1⋅0+0⋅10⋅1-1⋅1+1⋅10⋅0-1⋅1+1⋅10⋅0-0+1⋅1]y=[100-1100-11][123321]
Paso 3.1.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
[100010001]y=[100-1100-11][123321]
[100010001]y=[100-1100-11][123321]
Paso 3.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
y=[100-1100-11][123321]
Paso 3.3
Multiplica [100-1100-11][123321].
Paso 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×2.
Paso 3.3.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
y=[1⋅1+0⋅3+0⋅21⋅2+0⋅3+0⋅1-1⋅1+1⋅3+0⋅2-1⋅2+1⋅3+0⋅10⋅1-1⋅3+1⋅20⋅2-1⋅3+1⋅1]
Paso 3.3.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
y=[1221-1-2]
y=[1221-1-2]
y=[1221-1-2]