Ingresa un problema...
Álgebra lineal Ejemplos
25x+30y+30z=1475 , 50x+30y+20z=990 , 75x+30y+20z=810
Paso 1
Obtén la forma AX=B del sistema de ecuaciones.
[253030503020753020]⋅[xyz]=[1475990810]
Paso 2
Paso 2.1
Find the determinant.
Paso 2.1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 2.1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|30203020|
Paso 2.1.1.4
Multiply element a11 by its cofactor.
25|30203020|
Paso 2.1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|50207520|
Paso 2.1.1.6
Multiply element a12 by its cofactor.
-30|50207520|
Paso 2.1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|50307530|
Paso 2.1.1.8
Multiply element a13 by its cofactor.
30|50307530|
Paso 2.1.1.9
Add the terms together.
25|30203020|-30|50207520|+30|50307530|
25|30203020|-30|50207520|+30|50307530|
Paso 2.1.2
Evalúa |30203020|.
Paso 2.1.2.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
25(30⋅20-30⋅20)-30|50207520|+30|50307530|
Paso 2.1.2.2
Simplifica el determinante.
Paso 2.1.2.2.1
Simplifica cada término.
Paso 2.1.2.2.1.1
Multiplica 30 por 20.
25(600-30⋅20)-30|50207520|+30|50307530|
Paso 2.1.2.2.1.2
Multiplica -30 por 20.
25(600-600)-30|50207520|+30|50307530|
25(600-600)-30|50207520|+30|50307530|
Paso 2.1.2.2.2
Resta 600 de 600.
25⋅0-30|50207520|+30|50307530|
25⋅0-30|50207520|+30|50307530|
25⋅0-30|50207520|+30|50307530|
Paso 2.1.3
Evalúa |50207520|.
Paso 2.1.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
25⋅0-30(50⋅20-75⋅20)+30|50307530|
Paso 2.1.3.2
Simplifica el determinante.
Paso 2.1.3.2.1
Simplifica cada término.
Paso 2.1.3.2.1.1
Multiplica 50 por 20.
25⋅0-30(1000-75⋅20)+30|50307530|
Paso 2.1.3.2.1.2
Multiplica -75 por 20.
25⋅0-30(1000-1500)+30|50307530|
25⋅0-30(1000-1500)+30|50307530|
Paso 2.1.3.2.2
Resta 1500 de 1000.
25⋅0-30⋅-500+30|50307530|
25⋅0-30⋅-500+30|50307530|
25⋅0-30⋅-500+30|50307530|
Paso 2.1.4
Evalúa |50307530|.
Paso 2.1.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
25⋅0-30⋅-500+30(50⋅30-75⋅30)
Paso 2.1.4.2
Simplifica el determinante.
Paso 2.1.4.2.1
Simplifica cada término.
Paso 2.1.4.2.1.1
Multiplica 50 por 30.
25⋅0-30⋅-500+30(1500-75⋅30)
Paso 2.1.4.2.1.2
Multiplica -75 por 30.
25⋅0-30⋅-500+30(1500-2250)
25⋅0-30⋅-500+30(1500-2250)
Paso 2.1.4.2.2
Resta 2250 de 1500.
25⋅0-30⋅-500+30⋅-750
25⋅0-30⋅-500+30⋅-750
25⋅0-30⋅-500+30⋅-750
Paso 2.1.5
Simplifica el determinante.
Paso 2.1.5.1
Simplifica cada término.
Paso 2.1.5.1.1
Multiplica 25 por 0.
0-30⋅-500+30⋅-750
Paso 2.1.5.1.2
Multiplica -30 por -500.
0+15000+30⋅-750
Paso 2.1.5.1.3
Multiplica 30 por -750.
0+15000-22500
0+15000-22500
Paso 2.1.5.2
Suma 0 y 15000.
15000-22500
Paso 2.1.5.3
Resta 22500 de 15000.
-7500
-7500
-7500
Paso 2.2
Since the determinant is non-zero, the inverse exists.
Paso 2.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[253030100503020010753020001]
Paso 2.4
Obtén la forma escalonada reducida por filas.
Paso 2.4.1
Multiply each element of R1 by 125 to make the entry at 1,1 a 1.
Paso 2.4.1.1
Multiply each element of R1 by 125 to make the entry at 1,1 a 1.
[252530253025125025025503020010753020001]
Paso 2.4.1.2
Simplifica R1.
[1656512500503020010753020001]
[1656512500503020010753020001]
Paso 2.4.2
Perform the row operation R2=R2-50R1 to make the entry at 2,1 a 0.
Paso 2.4.2.1
Perform the row operation R2=R2-50R1 to make the entry at 2,1 a 0.
[165651250050-50⋅130-50(65)20-50(65)0-50(125)1-50⋅00-50⋅0753020001]
Paso 2.4.2.2
Simplifica R2.
[16565125000-30-40-210753020001]
[16565125000-30-40-210753020001]
Paso 2.4.3
Perform the row operation R3=R3-75R1 to make the entry at 3,1 a 0.
Paso 2.4.3.1
Perform the row operation R3=R3-75R1 to make the entry at 3,1 a 0.
[16565125000-30-40-21075-75⋅130-75(65)20-75(65)0-75(125)0-75⋅01-75⋅0]
Paso 2.4.3.2
Simplifica R3.
[16565125000-30-40-2100-60-70-301]
[16565125000-30-40-2100-60-70-301]
Paso 2.4.4
Multiply each element of R2 by -130 to make the entry at 2,2 a 1.
Paso 2.4.4.1
Multiply each element of R2 by -130 to make the entry at 2,2 a 1.
[1656512500-130⋅0-130⋅-30-130⋅-40-130⋅-2-130⋅1-130⋅00-60-70-301]
Paso 2.4.4.2
Simplifica R2.
[16565125000143115-13000-60-70-301]
[16565125000143115-13000-60-70-301]
Paso 2.4.5
Perform the row operation R3=R3+60R2 to make the entry at 3,2 a 0.
Paso 2.4.5.1
Perform the row operation R3=R3+60R2 to make the entry at 3,2 a 0.
[16565125000143115-13000+60⋅0-60+60⋅1-70+60(43)-3+60(115)0+60(-130)1+60⋅0]
Paso 2.4.5.2
Simplifica R3.
[16565125000143115-130000101-21]
[16565125000143115-130000101-21]
Paso 2.4.6
Multiply each element of R3 by 110 to make the entry at 3,3 a 1.
Paso 2.4.6.1
Multiply each element of R3 by 110 to make the entry at 3,3 a 1.
[16565125000143115-13000100101010110-210110]
Paso 2.4.6.2
Simplifica R3.
[16565125000143115-1300001110-15110]
[16565125000143115-1300001110-15110]
Paso 2.4.7
Perform the row operation R2=R2-43R3 to make the entry at 2,3 a 0.
Paso 2.4.7.1
Perform the row operation R2=R2-43R3 to make the entry at 2,3 a 0.
[16565125000-43⋅01-43⋅043-43⋅1115-43⋅110-130-43(-15)0-43⋅110001110-15110]
Paso 2.4.7.2
Simplifica R2.
[1656512500010-115730-215001110-15110]
[1656512500010-115730-215001110-15110]
Paso 2.4.8
Perform the row operation R1=R1-65R3 to make the entry at 1,3 a 0.
Paso 2.4.8.1
Perform the row operation R1=R1-65R3 to make the entry at 1,3 a 0.
[1-65⋅065-65⋅065-65⋅1125-65⋅1100-65(-15)0-65⋅110010-115730-215001110-15110]
Paso 2.4.8.2
Simplifica R1.
[1650-225625-325010-115730-215001110-15110]
[1650-225625-325010-115730-215001110-15110]
Paso 2.4.9
Perform the row operation R1=R1-65R2 to make the entry at 1,2 a 0.
Paso 2.4.9.1
Perform the row operation R1=R1-65R2 to make the entry at 1,2 a 0.
[1-65⋅065-65⋅10-65⋅0-225-65(-115)625-65⋅730-325-65(-215)010-115730-215001110-15110]
Paso 2.4.9.2
Simplifica R1.
[1000-125125010-115730-215001110-15110]
[1000-125125010-115730-215001110-15110]
[1000-125125010-115730-215001110-15110]
Paso 2.5
The right half of the reduced row echelon form is the inverse.
[0-125125-115730-215110-15110]
[0-125125-115730-215110-15110]
Paso 3
Multiplica por la izquierda ambos lados de la ecuación de matriz por la matriz inversa.
([0-125125-115730-215110-15110]⋅[253030503020753020])⋅[xyz]=[0-125125-115730-215110-15110]⋅[1475990810]
Paso 4
Cualquier matriz multiplicada por su inversa es igual a 1 todo el tiempo. A⋅A-1=1.
[xyz]=[0-125125-115730-215110-15110]⋅[1475990810]
Paso 5
Paso 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Paso 5.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
[0⋅1475-125⋅990+125⋅810-115⋅1475+730⋅990-215⋅810110⋅1475-15⋅990+110⋅810]
Paso 5.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
[-365743612]
[-365743612]
Paso 6
Simplifica los lados izquierdo y derecho.
[xyz]=[-365743612]
Paso 7
Obtén la solución.
x=-365
y=743
z=612