Ingresa un problema...
Álgebra lineal Ejemplos
[-et1ete-t][−et1ete−t]
Paso 1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Paso 2
Paso 2.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-ete-t-et⋅1−ete−t−et⋅1
Paso 2.2
Simplifica cada término.
Paso 2.2.1
Multiplica etet por e-te−t sumando los exponentes.
Paso 2.2.1.1
Mueve e-te−t.
-(e-tet)-et⋅1−(e−tet)−et⋅1
Paso 2.2.1.2
Usa la regla de la potencia aman=am+naman=am+n para combinar exponentes.
-e-t+t-et⋅1−e−t+t−et⋅1
Paso 2.2.1.3
Suma -t−t y tt.
-e0-et⋅1−e0−et⋅1
-e0-et⋅1−e0−et⋅1
Paso 2.2.2
Simplifica -e0−e0.
-1-et⋅1−1−et⋅1
Paso 2.2.3
Multiplica -1−1 por 11.
-1-et−1−et
-1-et−1−et
-1-et−1−et
Paso 3
Since the determinant is non-zero, the inverse exists.
Paso 4
Substitute the known values into the formula for the inverse.
1-1-et[e-t-1-et-et]1−1−et[e−t−1−et−et]
Paso 5
Reescribe -1−1 como -1(1)−1(1).
1-1(1)-et[e-t-1-et-et]1−1(1)−et[e−t−1−et−et]
Paso 6
Factoriza -1−1 de -et−et.
1-1(1)-(et)[e-t-1-et-et]1−1(1)−(et)[e−t−1−et−et]
Paso 7
Factoriza -1−1 de -1(1)-(et)−1(1)−(et).
1-1(1+et)[e-t-1-et-et]1−1(1+et)[e−t−1−et−et]
Paso 8
Mueve el negativo al frente de la fracción.
-11+et[e-t-1-et-et]−11+et[e−t−1−et−et]
Paso 9
Multiplica -11+et−11+et por cada elemento de la matriz.
[-11+ete-t-11+et⋅-1-11+et(-et)-11+et(-et)][−11+ete−t−11+et⋅−1−11+et(−et)−11+et(−et)]
Paso 10
Paso 10.1
Combina e-te−t y 11+et11+et.
[-e-t1+et-11+et⋅-1-11+et(-et)-11+et(-et)]⎡⎣−e−t1+et−11+et⋅−1−11+et(−et)−11+et(−et)⎤⎦
Paso 10.2
Multiplica -11+et⋅-1−11+et⋅−1.
Paso 10.2.1
Multiplica -1−1 por -1−1.
[-e-t1+et111+et-11+et(-et)-11+et(-et)]⎡⎣−e−t1+et111+et−11+et(−et)−11+et(−et)⎤⎦
Paso 10.2.2
Multiplica 11+et11+et por 11.
[-e-t1+et11+et-11+et(-et)-11+et(-et)]⎡⎣−e−t1+et11+et−11+et(−et)−11+et(−et)⎤⎦
[-e-t1+et11+et-11+et(-et)-11+et(-et)]⎡⎣−e−t1+et11+et−11+et(−et)−11+et(−et)⎤⎦
Paso 10.3
Multiplica -11+et(-et)−11+et(−et).
Paso 10.3.1
Multiplica -1−1 por -1−1.
[-e-t1+et11+et111+etet-11+et(-et)]⎡⎣−e−t1+et11+et111+etet−11+et(−et)⎤⎦
Paso 10.3.2
Multiplica 11+et11+et por 11.
[-e-t1+et11+et11+etet-11+et(-et)]⎡⎣−e−t1+et11+et11+etet−11+et(−et)⎤⎦
Paso 10.3.3
Combina 11+et11+et y etet.
[-e-t1+et11+etet1+et-11+et(-et)]⎡⎣−e−t1+et11+etet1+et−11+et(−et)⎤⎦
[-e-t1+et11+etet1+et-11+et(-et)]⎡⎣−e−t1+et11+etet1+et−11+et(−et)⎤⎦
Paso 10.4
Multiplica -11+et(-et)−11+et(−et).
Paso 10.4.1
Multiplica -1−1 por -1−1.
[-e-t1+et11+etet1+et111+etet]⎡⎣−e−t1+et11+etet1+et111+etet⎤⎦
Paso 10.4.2
Multiplica 11+et11+et por 11.
[-e-t1+et11+etet1+et11+etet]⎡⎣−e−t1+et11+etet1+et11+etet⎤⎦
Paso 10.4.3
Combina 11+et11+et y etet.
[-e-t1+et11+etet1+etet1+et]⎡⎣−e−t1+et11+etet1+etet1+et⎤⎦
[-e-t1+et11+etet1+etet1+et]⎡⎣−e−t1+et11+etet1+etet1+et⎤⎦
[-e-t1+et11+etet1+etet1+et]