Álgebra lineal Ejemplos

Hallar el núcleo S([[a],[b],[c]])=[[a-b-c],[a-b-c],[a-b+c]]
Paso 1
El núcleo de una transformación es un vector que hace que la transformación sea igual al vector nulo (la imagen previa de la transformación).
Paso 2
Crea un sistema de ecuaciones a partir de la ecuación vectorial.
Paso 3
Write the system as a matrix.
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Perform the row operation to make the entry at a .
Toca para ver más pasos...
Paso 4.1.1
Perform the row operation to make the entry at a .
Paso 4.1.2
Simplifica .
Paso 4.2
Perform the row operation to make the entry at a .
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation to make the entry at a .
Paso 4.2.2
Simplifica .
Paso 4.3
Swap with to put a nonzero entry at .
Paso 4.4
Multiply each element of by to make the entry at a .
Toca para ver más pasos...
Paso 4.4.1
Multiply each element of by to make the entry at a .
Paso 4.4.2
Simplifica .
Paso 4.5
Perform the row operation to make the entry at a .
Toca para ver más pasos...
Paso 4.5.1
Perform the row operation to make the entry at a .
Paso 4.5.2
Simplifica .
Paso 5
Use the result matrix to declare the final solution to the system of equations.
Paso 6
Write a solution vector by solving in terms of the free variables in each row.
Paso 7
Write the solution as a linear combination of vectors.
Paso 8
Write as a solution set.
Paso 9
The solution is the set of vectors created from the free variables of the system.
Paso 10
El núcleo de es el subespacio .