Álgebra lineal Ejemplos

Hallar la inversa [[4,-10,29],[1,-2,5],[-3,7,-19]]
[4-10291-25-37-19]410291253719
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-257-19|25719
Paso 1.1.4
Multiply element a11a11 by its cofactor.
4|-257-19|425719
Paso 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|15-3-19|15319
Paso 1.1.6
Multiply element a12a12 by its cofactor.
10|15-3-19|1015319
Paso 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1-2-37|1237
Paso 1.1.8
Multiply element a13a13 by its cofactor.
29|1-2-37|291237
Paso 1.1.9
Add the terms together.
4|-257-19|+10|15-3-19|+29|1-2-37|425719+1015319+291237
4|-257-19|+10|15-3-19|+29|1-2-37|425719+1015319+291237
Paso 1.2
Evalúa |-257-19|25719.
Toca para ver más pasos...
Paso 1.2.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
4(-2-19-75)+10|15-3-19|+29|1-2-37|4(21975)+1015319+291237
Paso 1.2.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.2.1.1
Multiplica -22 por -1919.
4(38-75)+10|15-3-19|+29|1-2-37|4(3875)+1015319+291237
Paso 1.2.2.1.2
Multiplica -77 por 55.
4(38-35)+10|15-3-19|+29|1-2-37|4(3835)+1015319+291237
4(38-35)+10|15-3-19|+29|1-2-37|4(3835)+1015319+291237
Paso 1.2.2.2
Resta 3535 de 3838.
43+10|15-3-19|+29|1-2-37|43+1015319+291237
43+10|15-3-19|+29|1-2-37|43+1015319+291237
43+10|15-3-19|+29|1-2-37|43+1015319+291237
Paso 1.3
Evalúa |15-3-19|15319.
Toca para ver más pasos...
Paso 1.3.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
43+10(1-19-(-35))+29|1-2-37|43+10(119(35))+291237
Paso 1.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.2.1.1
Multiplica -1919 por 11.
43+10(-19-(-35))+29|1-2-37|43+10(19(35))+291237
Paso 1.3.2.1.2
Multiplica -(-35)(35).
Toca para ver más pasos...
Paso 1.3.2.1.2.1
Multiplica -33 por 55.
43+10(-19--15)+29|1-2-37|43+10(1915)+291237
Paso 1.3.2.1.2.2
Multiplica -11 por -1515.
43+10(-19+15)+29|1-2-37|43+10(19+15)+291237
43+10(-19+15)+29|1-2-37|43+10(19+15)+291237
43+10(-19+15)+29|1-2-37|43+10(19+15)+291237
Paso 1.3.2.2
Suma -1919 y 1515.
43+10-4+29|1-2-37|43+104+291237
43+10-4+29|1-2-37|43+104+291237
43+10-4+29|1-2-37|43+104+291237
Paso 1.4
Evalúa |1-2-37|1237.
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz 2×22×2 puede obtenerse usando la fórmula |abcd|=ad-cbabcd=adcb.
43+10-4+29(17-(-3-2))43+104+29(17(32))
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica 77 por 11.
43+10-4+29(7-(-3-2))43+104+29(7(32))
Paso 1.4.2.1.2
Multiplica -(-3-2)(32).
Toca para ver más pasos...
Paso 1.4.2.1.2.1
Multiplica -33 por -22.
43+10-4+29(7-16)43+104+29(716)
Paso 1.4.2.1.2.2
Multiplica -11 por 66.
43+10-4+29(7-6)43+104+29(76)
43+10-4+29(7-6)43+104+29(76)
43+10-4+29(7-6)43+104+29(76)
Paso 1.4.2.2
Resta 66 de 77.
43+10-4+29143+104+291
43+10-4+29143+104+291
43+10-4+29143+104+291
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.5.1.1
Multiplica 44 por 33.
12+10-4+29112+104+291
Paso 1.5.1.2
Multiplica 1010 por -44.
12-40+2911240+291
Paso 1.5.1.3
Multiplica 29 por 1.
12-40+29
12-40+29
Paso 1.5.2
Resta 40 de 12.
-28+29
Paso 1.5.3
Suma -28 y 29.
1
1
1
Paso 2
Since the determinant is non-zero, the inverse exists.
Paso 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[4-10291001-25010-37-19001]
Paso 4
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
Toca para ver más pasos...
Paso 4.1.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
[44-1042941404041-25010-37-19001]
Paso 4.1.2
Simplifica R1.
[1-5229414001-25010-37-19001]
[1-5229414001-25010-37-19001]
Paso 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Toca para ver más pasos...
Paso 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-5229414001-1-2+525-2940-141-00-0-37-19001]
Paso 4.2.2
Simplifica R2.
[1-522941400012-94-1410-37-19001]
[1-522941400012-94-1410-37-19001]
Paso 4.3
Perform the row operation R3=R3+3R1 to make the entry at 3,1 a 0.
Toca para ver más pasos...
Paso 4.3.1
Perform the row operation R3=R3+3R1 to make the entry at 3,1 a 0.
[1-522941400012-94-1410-3+317+3(-52)-19+3(294)0+3(14)0+301+30]
Paso 4.3.2
Simplifica R3.
[1-522941400012-94-14100-121143401]
[1-522941400012-94-14100-121143401]
Paso 4.4
Multiply each element of R2 by 2 to make the entry at 2,2 a 1.
Toca para ver más pasos...
Paso 4.4.1
Multiply each element of R2 by 2 to make the entry at 2,2 a 1.
[1-522941400202(12)2(-94)2(-14)21200-121143401]
Paso 4.4.2
Simplifica R2.
[1-52294140001-92-12200-121143401]
[1-52294140001-92-12200-121143401]
Paso 4.5
Perform the row operation R3=R3+12R2 to make the entry at 3,2 a 0.
Toca para ver más pasos...
Paso 4.5.1
Perform the row operation R3=R3+12R2 to make the entry at 3,2 a 0.
[1-52294140001-92-12200+120-12+121114+12(-92)34+12(-12)0+1221+120]
Paso 4.5.2
Simplifica R3.
[1-52294140001-92-122000121211]
[1-52294140001-92-122000121211]
Paso 4.6
Multiply each element of R3 by 2 to make the entry at 3,3 a 1.
Toca para ver más pasos...
Paso 4.6.1
Multiply each element of R3 by 2 to make the entry at 3,3 a 1.
[1-52294140001-92-122020202(12)2(12)2121]
Paso 4.6.2
Simplifica R3.
[1-52294140001-92-1220001122]
[1-52294140001-92-1220001122]
Paso 4.7
Perform the row operation R2=R2+92R3 to make the entry at 2,3 a 0.
Toca para ver más pasos...
Paso 4.7.1
Perform the row operation R2=R2+92R3 to make the entry at 2,3 a 0.
[1-5229414000+9201+920-92+921-12+9212+9220+922001122]
Paso 4.7.2
Simplifica R2.
[1-5229414000104119001122]
[1-5229414000104119001122]
Paso 4.8
Perform the row operation R1=R1-294R3 to make the entry at 1,3 a 0.
Toca para ver más pasos...
Paso 4.8.1
Perform the row operation R1=R1-294R3 to make the entry at 1,3 a 0.
[1-2940-52-2940294-294114-29410-29420-29420104119001122]
Paso 4.8.2
Simplifica R1.
[1-520-7-292-2920104119001122]
[1-520-7-292-2920104119001122]
Paso 4.9
Perform the row operation R1=R1+52R2 to make the entry at 1,2 a 0.
Toca para ver más pasos...
Paso 4.9.1
Perform the row operation R1=R1+52R2 to make the entry at 1,2 a 0.
[1+520-52+5210+520-7+524-292+5211-292+5290104119001122]
Paso 4.9.2
Simplifica R1.
[10031380104119001122]
[10031380104119001122]
[10031380104119001122]
Paso 5
The right half of the reduced row echelon form is the inverse.
[31384119122]
 [x2  12  π  xdx ]