Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2
Paso 2.1
Suma a ambos lados de la ecuación.
Paso 2.2
Divide cada término en por y simplifica.
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Paso 2.2.2.1
Cancela el factor común de .
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Paso 4.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 4.2
Simplifica cada lado de la ecuación.
Paso 4.2.1
Usa para reescribir como .
Paso 4.2.2
Simplifica el lado izquierdo.
Paso 4.2.2.1
Simplifica .
Paso 4.2.2.1.1
Multiplica los exponentes en .
Paso 4.2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.2.1.1.2
Cancela el factor común de .
Paso 4.2.2.1.1.2.1
Cancela el factor común.
Paso 4.2.2.1.1.2.2
Reescribe la expresión.
Paso 4.2.2.1.2
Simplifica.
Paso 4.2.3
Simplifica el lado derecho.
Paso 4.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.3
Resuelve
Paso 4.3.1
Suma a ambos lados de la ecuación.
Paso 4.3.2
Divide cada término en por y simplifica.
Paso 4.3.2.1
Divide cada término en por .
Paso 4.3.2.2
Simplifica el lado izquierdo.
Paso 4.3.2.2.1
Cancela el factor común de .
Paso 4.3.2.2.1.1
Cancela el factor común.
Paso 4.3.2.2.1.2
Divide por .
Paso 4.3.2.3
Simplifica el lado derecho.
Paso 4.3.2.3.1
Divide por .
Paso 5
Establece el radicando en menor que para obtener el lugar donde no está definida la expresión.
Paso 6
Paso 6.1
Suma a ambos lados de la desigualdad.
Paso 6.2
Divide cada término en por y simplifica.
Paso 6.2.1
Divide cada término en por .
Paso 6.2.2
Simplifica el lado izquierdo.
Paso 6.2.2.1
Cancela el factor común de .
Paso 6.2.2.1.1
Cancela el factor común.
Paso 6.2.2.1.2
Divide por .
Paso 6.2.3
Simplifica el lado derecho.
Paso 6.2.3.1
Divide por .
Paso 7
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 8