Matemática discreta Ejemplos

Encontrar el dominio logaritmo natural de sin(x)
Paso 1
Establece el argumento en mayor que para obtener el lugar donde está definida la expresión.
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Paso 2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.1
El valor exacto de es .
Paso 2.3
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Paso 2.4
Resta de .
Paso 2.5
Obtén el período de .
Toca para ver más pasos...
Paso 2.5.1
El período de la función puede calcularse mediante .
Paso 2.5.2
Reemplaza con en la fórmula para el período.
Paso 2.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 2.5.4
Divide por .
Paso 2.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Paso 2.7
Consolida las respuestas.
, para cualquier número entero
Paso 2.8
Identifica el coeficiente principal.
Toca para ver más pasos...
Paso 2.8.1
El término de mayor grado en un polinomio es el término que tiene el grado más alto.
Paso 2.8.2
El coeficiente principal en un polinomio es el coeficiente del término de mayor grado.
Paso 2.9
Como no hay intersecciones reales con x y el coeficiente principal es positivo, la parábola se abre hacia arriba y siempre es mayor que .
Todos los números reales
Todos los números reales
Paso 3
El dominio son todos números reales.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4