Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Resta de ambos lados de la ecuación.
Paso 2
Paso 2.1
Divide cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Paso 2.2.1
Cancela el factor común de .
Paso 2.2.1.1
Cancela el factor común.
Paso 2.2.1.2
Divide por .
Paso 2.3
Simplifica el lado derecho.
Paso 2.3.1
Simplifica cada término.
Paso 2.3.1.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.3.1.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4
Paso 4.1
Combina los numeradores sobre el denominador común.
Paso 4.2
Factoriza de .
Paso 4.2.1
Factoriza de .
Paso 4.2.2
Factoriza de .
Paso 4.2.3
Factoriza de .
Paso 4.3
Reescribe como .
Paso 4.4
Multiplica por .
Paso 4.5
Combina y simplifica el denominador.
Paso 4.5.1
Multiplica por .
Paso 4.5.2
Eleva a la potencia de .
Paso 4.5.3
Eleva a la potencia de .
Paso 4.5.4
Usa la regla de la potencia para combinar exponentes.
Paso 4.5.5
Suma y .
Paso 4.5.6
Reescribe como .
Paso 4.5.6.1
Usa para reescribir como .
Paso 4.5.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.5.6.3
Combina y .
Paso 4.5.6.4
Cancela el factor común de .
Paso 4.5.6.4.1
Cancela el factor común.
Paso 4.5.6.4.2
Reescribe la expresión.
Paso 4.5.6.5
Evalúa el exponente.
Paso 4.6
Simplifica el numerador.
Paso 4.6.1
Combina con la regla del producto para radicales.
Paso 4.6.2
Multiplica por .
Paso 5
Paso 5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 6
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 7
Paso 7.1
Divide cada término en por y simplifica.
Paso 7.1.1
Divide cada término en por .
Paso 7.1.2
Simplifica el lado izquierdo.
Paso 7.1.2.1
Cancela el factor común de .
Paso 7.1.2.1.1
Cancela el factor común.
Paso 7.1.2.1.2
Divide por .
Paso 7.1.3
Simplifica el lado derecho.
Paso 7.1.3.1
Divide por .
Paso 7.2
Resta de ambos lados de la desigualdad.
Paso 7.3
Divide cada término en por y simplifica.
Paso 7.3.1
Divide cada término en por .
Paso 7.3.2
Simplifica el lado izquierdo.
Paso 7.3.2.1
Cancela el factor común de .
Paso 7.3.2.1.1
Cancela el factor común.
Paso 7.3.2.1.2
Divide por .
Paso 7.3.3
Simplifica el lado derecho.
Paso 7.3.3.1
Mueve el negativo al frente de la fracción.
Paso 8
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 9