Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Paso 1.1
Suma y .
Paso 1.2
Factoriza por agrupación.
Paso 1.2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 1.2.1.1
Factoriza de .
Paso 1.2.1.2
Reescribe como más
Paso 1.2.1.3
Aplica la propiedad distributiva.
Paso 1.2.2
Factoriza el máximo común divisor de cada grupo.
Paso 1.2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 1.2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 1.2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4
Paso 4.1
Multiplica por .
Paso 4.2
Multiplica por .
Paso 4.3
Reordena los factores de .
Paso 4.4
Reordena los factores de .
Paso 5
Combina los numeradores sobre el denominador común.
Paso 6
Paso 6.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 6.1.1
Aplica la propiedad distributiva.
Paso 6.1.2
Aplica la propiedad distributiva.
Paso 6.1.3
Aplica la propiedad distributiva.
Paso 6.2
Simplifica y combina los términos similares.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 6.2.1.2
Multiplica por sumando los exponentes.
Paso 6.2.1.2.1
Mueve .
Paso 6.2.1.2.2
Multiplica por .
Paso 6.2.1.3
Mueve a la izquierda de .
Paso 6.2.1.4
Multiplica por .
Paso 6.2.1.5
Multiplica por .
Paso 6.2.2
Resta de .
Paso 6.3
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 6.4
Simplifica cada término.
Paso 6.4.1
Multiplica por sumando los exponentes.
Paso 6.4.1.1
Mueve .
Paso 6.4.1.2
Multiplica por .
Paso 6.4.1.2.1
Eleva a la potencia de .
Paso 6.4.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 6.4.1.3
Suma y .
Paso 6.4.2
Multiplica por .
Paso 6.4.3
Multiplica por sumando los exponentes.
Paso 6.4.3.1
Mueve .
Paso 6.4.3.2
Multiplica por .
Paso 6.4.4
Multiplica por .
Paso 6.4.5
Multiplica por .
Paso 6.5
Resta de .
Paso 6.6
Resta de .
Paso 6.7
Aplica la propiedad distributiva.
Paso 6.8
Multiplica por .
Paso 6.9
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 6.9.1
Aplica la propiedad distributiva.
Paso 6.9.2
Aplica la propiedad distributiva.
Paso 6.9.3
Aplica la propiedad distributiva.
Paso 6.10
Simplifica cada término.
Paso 6.10.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 6.10.2
Multiplica por sumando los exponentes.
Paso 6.10.2.1
Mueve .
Paso 6.10.2.2
Multiplica por .
Paso 6.10.2.2.1
Eleva a la potencia de .
Paso 6.10.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 6.10.2.3
Suma y .
Paso 6.10.3
Multiplica por .
Paso 6.10.4
Multiplica por .
Paso 6.10.5
Multiplica por .
Paso 6.10.6
Multiplica por .
Paso 6.11
Resta de .
Paso 6.12
Suma y .
Paso 6.13
Resta de .
Paso 6.14
Resta de .
Paso 6.15
Resta de .
Paso 7
Paso 7.1
Factoriza de .
Paso 7.2
Factoriza de .
Paso 7.3
Factoriza de .
Paso 7.4
Reescribe como .
Paso 7.5
Factoriza de .
Paso 7.6
Simplifica la expresión.
Paso 7.6.1
Reescribe como .
Paso 7.6.2
Mueve el negativo al frente de la fracción.