Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Escribe como una ecuación.
Paso 2
Intercambia las variables.
Paso 3
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Multiplica ambos lados de la ecuación por .
Paso 3.3
Simplifica el lado izquierdo.
Paso 3.3.1
Simplifica .
Paso 3.3.1.1
Combina y .
Paso 3.3.1.2
Cancela el factor común de .
Paso 3.3.1.2.1
Cancela el factor común.
Paso 3.3.1.2.2
Reescribe la expresión.
Paso 3.4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Reemplaza con para ver la respuesta final.
Paso 5
Paso 5.1
El dominio de la inversa es el rango de la función original y viceversa. Obtén el dominio y el rango de y y compáralos.
Paso 5.2
Obtén el rango de .
Paso 5.2.1
El rango es el conjunto de todos los valores válidos. Usa la gráfica para obtener el rango.
Notación de intervalo:
Paso 5.3
Obtén el dominio de .
Paso 5.3.1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 5.3.2
Divide cada término en por y simplifica.
Paso 5.3.2.1
Divide cada término en por .
Paso 5.3.2.2
Simplifica el lado izquierdo.
Paso 5.3.2.2.1
Cancela el factor común de .
Paso 5.3.2.2.1.1
Cancela el factor común.
Paso 5.3.2.2.1.2
Divide por .
Paso 5.3.2.3
Simplifica el lado derecho.
Paso 5.3.2.3.1
Divide por .
Paso 5.3.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 5.4
Obtén el dominio de .
Paso 5.4.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 5.5
Como el dominio de es el rango de y el rango de es el dominio de , entonces es la inversa de .
Paso 6