Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Escribe como una ecuación.
Paso 2
Intercambia las variables.
Paso 3
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Suma a ambos lados de la ecuación.
Paso 3.3
Divide cada término en por y simplifica.
Paso 3.3.1
Divide cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Paso 3.3.2.1
Cancela el factor común de .
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Divide por .
Paso 3.3.3
Simplifica el lado derecho.
Paso 3.3.3.1
Simplifica cada término.
Paso 3.3.3.1.1
Multiplica por .
Paso 3.3.3.1.2
Factoriza de .
Paso 3.3.3.1.3
Separa las fracciones.
Paso 3.3.3.1.4
Divide por .
Paso 3.3.3.1.5
Divide por .
Paso 3.3.3.1.6
Divide por .
Paso 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Replace with to show the final answer.
Paso 5
Paso 5.1
El dominio de la inversa es el rango de la función original y viceversa. Obtén el dominio y el rango de y y compáralos.
Paso 5.2
Obtén el rango de .
Paso 5.2.1
El rango es el conjunto de todos los valores válidos. Usa la gráfica para obtener el rango.
Notación de intervalo:
Paso 5.3
Obtén el dominio de .
Paso 5.3.1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 5.3.2
Resuelve
Paso 5.3.2.1
Resta de ambos lados de la desigualdad.
Paso 5.3.2.2
Divide cada término en por y simplifica.
Paso 5.3.2.2.1
Divide cada término en por .
Paso 5.3.2.2.2
Simplifica el lado izquierdo.
Paso 5.3.2.2.2.1
Cancela el factor común de .
Paso 5.3.2.2.2.1.1
Cancela el factor común.
Paso 5.3.2.2.2.1.2
Divide por .
Paso 5.3.2.2.3
Simplifica el lado derecho.
Paso 5.3.2.2.3.1
Divide por .
Paso 5.3.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 5.4
Como el dominio de no es igual al rango de , entonces no es una inversa de .
No hay una inversa
No hay una inversa
Paso 6