Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Sustituye por .
Paso 2
Resta de ambos lados de la ecuación.
Paso 3
Usa la fórmula cuadrática para obtener las soluciones.
Paso 4
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 5
Paso 5.1
Simplifica el numerador.
Paso 5.1.1
Eleva a la potencia de .
Paso 5.1.2
Multiplica .
Paso 5.1.2.1
Multiplica por .
Paso 5.1.2.2
Multiplica por .
Paso 5.1.3
Suma y .
Paso 5.1.4
Reescribe como .
Paso 5.1.4.1
Factoriza de .
Paso 5.1.4.2
Reescribe como .
Paso 5.1.5
Retira los términos de abajo del radical.
Paso 5.2
Multiplica por .
Paso 5.3
Simplifica .
Paso 6
La respuesta final es la combinación de ambas soluciones.
Paso 7
Sustituye por .
Paso 8
Establece cada una de las soluciones para obtener el valor de .
Paso 9
Paso 9.1
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Paso 9.2
Simplifica el lado derecho.
Paso 9.2.1
Evalúa .
Paso 9.3
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Paso 9.4
Resuelve
Paso 9.4.1
Elimina los paréntesis.
Paso 9.4.2
Elimina los paréntesis.
Paso 9.4.3
Resta de .
Paso 9.5
Obtén el período de .
Paso 9.5.1
El período de la función puede calcularse mediante .
Paso 9.5.2
Reemplaza con en la fórmula para el período.
Paso 9.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 9.5.4
Divide por .
Paso 9.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 10
Paso 10.1
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Paso 10.2
Simplifica el lado derecho.
Paso 10.2.1
Evalúa .
Paso 10.3
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Paso 10.4
Resuelve
Paso 10.4.1
Elimina los paréntesis.
Paso 10.4.2
Elimina los paréntesis.
Paso 10.4.3
Suma y .
Paso 10.5
Obtén el período de .
Paso 10.5.1
El período de la función puede calcularse mediante .
Paso 10.5.2
Reemplaza con en la fórmula para el período.
Paso 10.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 10.5.4
Divide por .
Paso 10.6
Suma a todos los ángulos negativos para obtener ángulos positivos.
Paso 10.6.1
Suma y para obtener el ángulo positivo.
Paso 10.6.2
Resta de .
Paso 10.6.3
Enumera los nuevos ángulos.
Paso 10.7
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 11
Enumera todas las soluciones.
, para cualquier número entero