Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Reescribe la ecuación como .
Paso 2
Resta de ambos lados de la ecuación.
Paso 3
Paso 3.1
Divide cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.2.2
Divide por .
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Simplifica cada término.
Paso 3.3.1.1
Mueve el negativo del denominador de .
Paso 3.3.1.2
Reescribe como .
Paso 3.3.1.3
Mueve el negativo del denominador de .
Paso 3.3.1.4
Reescribe como .
Paso 3.3.1.5
Multiplica por .
Paso 4
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 5
Paso 5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.2
Resta de ambos lados de la ecuación.
Paso 5.3
Suma a ambos lados de la ecuación.
Paso 5.4
Usa la fórmula cuadrática para obtener las soluciones.
Paso 5.5
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 5.6
Simplifica.
Paso 5.6.1
Simplifica el numerador.
Paso 5.6.1.1
Eleva a la potencia de .
Paso 5.6.1.2
Multiplica por .
Paso 5.6.1.3
Aplica la propiedad distributiva.
Paso 5.6.1.4
Multiplica por .
Paso 5.6.1.5
Suma y .
Paso 5.6.1.6
Factoriza de .
Paso 5.6.1.6.1
Factoriza de .
Paso 5.6.1.6.2
Factoriza de .
Paso 5.6.1.7
Reescribe como .
Paso 5.6.1.8
Retira los términos de abajo del radical.
Paso 5.6.2
Multiplica por .
Paso 5.6.3
Simplifica .
Paso 5.6.4
Mueve el negativo del denominador de .
Paso 5.6.5
Reescribe como .
Paso 5.7
La respuesta final es la combinación de ambas soluciones.
Paso 5.8
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.9
Simplifica .
Paso 5.9.1
Reescribe.
Paso 5.9.2
Simplifica mediante la adición de ceros.
Paso 5.9.3
Aplica la propiedad distributiva.
Paso 5.9.4
Multiplica .
Paso 5.9.4.1
Multiplica por .
Paso 5.9.4.2
Multiplica por .
Paso 5.9.5
Multiplica por .
Paso 5.10
Suma a ambos lados de la ecuación.
Paso 5.11
Resta de ambos lados de la ecuación.
Paso 5.12
Usa la fórmula cuadrática para obtener las soluciones.
Paso 5.13
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 5.14
Simplifica.
Paso 5.14.1
Simplifica el numerador.
Paso 5.14.1.1
Eleva a la potencia de .
Paso 5.14.1.2
Multiplica por .
Paso 5.14.1.3
Aplica la propiedad distributiva.
Paso 5.14.1.4
Multiplica por .
Paso 5.14.1.5
Multiplica por .
Paso 5.14.1.6
Suma y .
Paso 5.14.1.7
Factoriza de .
Paso 5.14.1.7.1
Factoriza de .
Paso 5.14.1.7.2
Factoriza de .
Paso 5.14.1.7.3
Factoriza de .
Paso 5.14.1.8
Reescribe como .
Paso 5.14.1.9
Retira los términos de abajo del radical.
Paso 5.14.2
Multiplica por .
Paso 5.14.3
Simplifica .
Paso 5.15
La respuesta final es la combinación de ambas soluciones.
Paso 5.16
La solución completa es el resultado de las partes positiva y negativa de la solución.