Ingresa un problema...
Matemática discreta Ejemplos
A[8-5-41-44-6-29]B=[-7259-945-15]A⎡⎢⎣8−5−41−44−6−29⎤⎥⎦B=⎡⎢⎣−7259−945−15⎤⎥⎦
Paso 1
Multiplica A por cada elemento de la matriz.
[A⋅8A⋅-5A⋅-4A⋅1A⋅-4A⋅4A⋅-6A⋅-2A⋅9]
Paso 2
Paso 2.1
Mueve 8 a la izquierda de A.
[8AA⋅-5A⋅-4A⋅1A⋅-4A⋅4A⋅-6A⋅-2A⋅9]
Paso 2.2
Mueve -5 a la izquierda de A.
[8A-5AA⋅-4A⋅1A⋅-4A⋅4A⋅-6A⋅-2A⋅9]
Paso 2.3
Mueve -4 a la izquierda de A.
[8A-5A-4AA⋅1A⋅-4A⋅4A⋅-6A⋅-2A⋅9]
Paso 2.4
Multiplica A por 1.
[8A-5A-4AAA⋅-4A⋅4A⋅-6A⋅-2A⋅9]
Paso 2.5
Mueve -4 a la izquierda de A.
[8A-5A-4AA-4AA⋅4A⋅-6A⋅-2A⋅9]
Paso 2.6
Mueve 4 a la izquierda de A.
[8A-5A-4AA-4A4AA⋅-6A⋅-2A⋅9]
Paso 2.7
Mueve -6 a la izquierda de A.
[8A-5A-4AA-4A4A-6AA⋅-2A⋅9]
Paso 2.8
Mueve -2 a la izquierda de A.
[8A-5A-4AA-4A4A-6A-2AA⋅9]
Paso 2.9
Mueve 9 a la izquierda de A.
[8A-5A-4AA-4A4A-6A-2A9A]
[8A-5A-4AA-4A4A-6A-2A9A]
Paso 3
Paso 3.1
Reescribe.
|8A-5A-4AA-4A4A-6A-2A9A|
Paso 3.2
Find the determinant.
Paso 3.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Paso 3.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Paso 3.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Paso 3.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-4A4A-2A9A|
Paso 3.2.1.4
Multiply element a11 by its cofactor.
8A|-4A4A-2A9A|
Paso 3.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|A4A-6A9A|
Paso 3.2.1.6
Multiply element a12 by its cofactor.
5A|A4A-6A9A|
Paso 3.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|A-4A-6A-2A|
Paso 3.2.1.8
Multiply element a13 by its cofactor.
-4A|A-4A-6A-2A|
Paso 3.2.1.9
Add the terms together.
8A|-4A4A-2A9A|+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A|-4A4A-2A9A|+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2
Evalúa |-4A4A-2A9A|.
Paso 3.2.2.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
8A(-4A(9A)-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2
Simplifica el determinante.
Paso 3.2.2.2.1
Simplifica cada término.
Paso 3.2.2.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
8A(-4⋅9A⋅A-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.2
Multiplica A por A sumando los exponentes.
Paso 3.2.2.2.1.2.1
Mueve A.
8A(-4⋅9(A⋅A)-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.2.2
Multiplica A por A.
8A(-4⋅9A2-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-4⋅9A2-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.3
Multiplica -4 por 9.
8A(-36A2-(-2A(4A)))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.4
Multiplica A por A sumando los exponentes.
Paso 3.2.2.2.1.4.1
Mueve A.
8A(-36A2-(-2(A⋅A)⋅4))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.4.2
Multiplica A por A.
8A(-36A2-(-2A2⋅4))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-36A2-(-2A2⋅4))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.5
Multiplica 4 por -2.
8A(-36A2-(-8A2))+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.1.6
Multiplica -8 por -1.
8A(-36A2+8A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-36A2+8A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.2.2.2
Suma -36A2 y 8A2.
8A(-28A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-28A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
8A(-28A2)+5A|A4A-6A9A|-4A|A-4A-6A-2A|
Paso 3.2.3
Evalúa |A4A-6A9A|.
Paso 3.2.3.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
8A(-28A2)+5A(A(9A)-(-6A(4A)))-4A|A-4A-6A-2A|
Paso 3.2.3.2
Simplifica el determinante.
Paso 3.2.3.2.1
Simplifica cada término.
Paso 3.2.3.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
8A(-28A2)+5A(9A⋅A-(-6A(4A)))-4A|A-4A-6A-2A|
Paso 3.2.3.2.1.2
Multiplica A por A sumando los exponentes.
Paso 3.2.3.2.1.2.1
Mueve A.
8A(-28A2)+5A(9(A⋅A)-(-6A(4A)))-4A|A-4A-6A-2A|
Paso 3.2.3.2.1.2.2
Multiplica A por A.
8A(-28A2)+5A(9A2-(-6A(4A)))-4A|A-4A-6A-2A|
8A(-28A2)+5A(9A2-(-6A(4A)))-4A|A-4A-6A-2A|
Paso 3.2.3.2.1.3
Multiplica A por A sumando los exponentes.
Paso 3.2.3.2.1.3.1
Mueve A.
8A(-28A2)+5A(9A2-(-6(A⋅A)⋅4))-4A|A-4A-6A-2A|
Paso 3.2.3.2.1.3.2
Multiplica A por A.
8A(-28A2)+5A(9A2-(-6A2⋅4))-4A|A-4A-6A-2A|
8A(-28A2)+5A(9A2-(-6A2⋅4))-4A|A-4A-6A-2A|
Paso 3.2.3.2.1.4
Multiplica 4 por -6.
8A(-28A2)+5A(9A2-(-24A2))-4A|A-4A-6A-2A|
Paso 3.2.3.2.1.5
Multiplica -24 por -1.
8A(-28A2)+5A(9A2+24A2)-4A|A-4A-6A-2A|
8A(-28A2)+5A(9A2+24A2)-4A|A-4A-6A-2A|
Paso 3.2.3.2.2
Suma 9A2 y 24A2.
8A(-28A2)+5A(33A2)-4A|A-4A-6A-2A|
8A(-28A2)+5A(33A2)-4A|A-4A-6A-2A|
8A(-28A2)+5A(33A2)-4A|A-4A-6A-2A|
Paso 3.2.4
Evalúa |A-4A-6A-2A|.
Paso 3.2.4.1
El determinante de una matriz 2×2 puede obtenerse usando la fórmula |abcd|=ad-cb.
8A(-28A2)+5A(33A2)-4A(A(-2A)-(-6A(-4A)))
Paso 3.2.4.2
Simplifica el determinante.
Paso 3.2.4.2.1
Simplifica cada término.
Paso 3.2.4.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
8A(-28A2)+5A(33A2)-4A(-2A⋅A-(-6A(-4A)))
Paso 3.2.4.2.1.2
Multiplica A por A sumando los exponentes.
Paso 3.2.4.2.1.2.1
Mueve A.
8A(-28A2)+5A(33A2)-4A(-2(A⋅A)-(-6A(-4A)))
Paso 3.2.4.2.1.2.2
Multiplica A por A.
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A(-4A)))
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A(-4A)))
Paso 3.2.4.2.1.3
Multiplica A por A sumando los exponentes.
Paso 3.2.4.2.1.3.1
Mueve A.
8A(-28A2)+5A(33A2)-4A(-2A2-(-6(A⋅A)⋅-4))
Paso 3.2.4.2.1.3.2
Multiplica A por A.
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A2⋅-4))
8A(-28A2)+5A(33A2)-4A(-2A2-(-6A2⋅-4))
Paso 3.2.4.2.1.4
Multiplica -4 por -6.
8A(-28A2)+5A(33A2)-4A(-2A2-(24A2))
Paso 3.2.4.2.1.5
Multiplica 24 por -1.
8A(-28A2)+5A(33A2)-4A(-2A2-24A2)
8A(-28A2)+5A(33A2)-4A(-2A2-24A2)
Paso 3.2.4.2.2
Resta 24A2 de -2A2.
8A(-28A2)+5A(33A2)-4A(-26A2)
8A(-28A2)+5A(33A2)-4A(-26A2)
8A(-28A2)+5A(33A2)-4A(-26A2)
Paso 3.2.5
Simplifica el determinante.
Paso 3.2.5.1
Simplifica cada término.
Paso 3.2.5.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
8⋅-28A⋅A2+5A(33A2)-4A(-26A2)
Paso 3.2.5.1.2
Multiplica A por A2 sumando los exponentes.
Paso 3.2.5.1.2.1
Mueve A2.
8⋅-28(A2A)+5A(33A2)-4A(-26A2)
Paso 3.2.5.1.2.2
Multiplica A2 por A.
Paso 3.2.5.1.2.2.1
Eleva A a la potencia de 1.
8⋅-28(A2A1)+5A(33A2)-4A(-26A2)
Paso 3.2.5.1.2.2.2
Usa la regla de la potencia aman=am+n para combinar exponentes.
8⋅-28A2+1+5A(33A2)-4A(-26A2)
8⋅-28A2+1+5A(33A2)-4A(-26A2)
Paso 3.2.5.1.2.3
Suma 2 y 1.
8⋅-28A3+5A(33A2)-4A(-26A2)
8⋅-28A3+5A(33A2)-4A(-26A2)
Paso 3.2.5.1.3
Multiplica 8 por -28.
-224A3+5A(33A2)-4A(-26A2)
Paso 3.2.5.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
-224A3+5⋅33A⋅A2-4A(-26A2)
Paso 3.2.5.1.5
Multiplica A por A2 sumando los exponentes.
Paso 3.2.5.1.5.1
Mueve A2.
-224A3+5⋅33(A2A)-4A(-26A2)
Paso 3.2.5.1.5.2
Multiplica A2 por A.
Paso 3.2.5.1.5.2.1
Eleva A a la potencia de 1.
-224A3+5⋅33(A2A1)-4A(-26A2)
Paso 3.2.5.1.5.2.2
Usa la regla de la potencia aman=am+n para combinar exponentes.
-224A3+5⋅33A2+1-4A(-26A2)
-224A3+5⋅33A2+1-4A(-26A2)
Paso 3.2.5.1.5.3
Suma 2 y 1.
-224A3+5⋅33A3-4A(-26A2)
-224A3+5⋅33A3-4A(-26A2)
Paso 3.2.5.1.6
Multiplica 5 por 33.
-224A3+165A3-4A(-26A2)
Paso 3.2.5.1.7
Reescribe con la propiedad conmutativa de la multiplicación.
-224A3+165A3-4⋅-26A⋅A2
Paso 3.2.5.1.8
Multiplica A por A2 sumando los exponentes.
Paso 3.2.5.1.8.1
Mueve A2.
-224A3+165A3-4⋅-26(A2A)
Paso 3.2.5.1.8.2
Multiplica A2 por A.
Paso 3.2.5.1.8.2.1
Eleva A a la potencia de 1.
-224A3+165A3-4⋅-26(A2A1)
Paso 3.2.5.1.8.2.2
Usa la regla de la potencia aman=am+n para combinar exponentes.
-224A3+165A3-4⋅-26A2+1
-224A3+165A3-4⋅-26A2+1
Paso 3.2.5.1.8.3
Suma 2 y 1.
-224A3+165A3-4⋅-26A3
-224A3+165A3-4⋅-26A3
Paso 3.2.5.1.9
Multiplica -4 por -26.
-224A3+165A3+104A3
-224A3+165A3+104A3
Paso 3.2.5.2
Suma -224A3 y 165A3.
-59A3+104A3
Paso 3.2.5.3
Suma -59A3 y 104A3.
45A3
45A3
45A3
Paso 3.3
Since the determinant is non-zero, the inverse exists.
Paso 3.4
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[8A-5A-4A100A-4A4A010-6A-2A9A001]
Paso 3.5
Obtén la forma escalonada reducida por filas.
Paso 3.5.1
Multiply each element of R1 by 18A to make the entry at 1,1 a 1.
Paso 3.5.1.1
Multiply each element of R1 by 18A to make the entry at 1,1 a 1.
[8A8A-5A8A-4A8A18A08A08AA-4A4A010-6A-2A9A001]
Paso 3.5.1.2
Simplifica R1.
[1-58-1218A00A-4A4A010-6A-2A9A001]
[1-58-1218A00A-4A4A010-6A-2A9A001]
Paso 3.5.2
Perform the row operation R2=R2-AR1 to make the entry at 2,1 a 0.
Paso 3.5.2.1
Perform the row operation R2=R2-AR1 to make the entry at 2,1 a 0.
[1-58-1218A00A-A⋅1-4A-A(-58)4A-A(-12)0-A18A1-A⋅00-A⋅0-6A-2A9A001]
Paso 3.5.2.2
Simplifica R2.
[1-58-1218A000-27A89A2-1810-6A-2A9A001]
[1-58-1218A000-27A89A2-1810-6A-2A9A001]
Paso 3.5.3
Perform the row operation R3=R3+6AR1 to make the entry at 3,1 a 0.
Paso 3.5.3.1
Perform the row operation R3=R3+6AR1 to make the entry at 3,1 a 0.
[1-58-1218A000-27A89A2-1810-6A+6A⋅1-2A+6A(-58)9A+6A(-12)0+6A18A0+6A⋅01+6A⋅0]
Paso 3.5.3.2
Simplifica R3.
[1-58-1218A000-27A89A2-18100-23A46A3401]
[1-58-1218A000-27A89A2-18100-23A46A3401]
Paso 3.5.4
Multiply each element of R2 by -827A to make the entry at 2,2 a 1.
Paso 3.5.4.1
Multiply each element of R2 by -827A to make the entry at 2,2 a 1.
[1-58-1218A00-827A⋅0-827A(-27A8)-827A⋅9A2-827A(-18)-827A⋅1-827A⋅00-23A46A3401]
Paso 3.5.4.2
Simplifica R2.
[1-58-1218A0001-43127A-827A00-23A46A3401]
[1-58-1218A0001-43127A-827A00-23A46A3401]
Paso 3.5.5
Perform the row operation R3=R3+23A4R2 to make the entry at 3,2 a 0.
Paso 3.5.5.1
Perform the row operation R3=R3+23A4R2 to make the entry at 3,2 a 0.
[1-58-1218A0001-43127A-827A00+23A4⋅0-23A4+23A4⋅16A+23A4(-43)34+23A4⋅127A0+23A4(-827A)1+23A4⋅0]
Paso 3.5.5.2
Simplifica R3.
[1-58-1218A0001-43127A-827A000-5A32627-46271]
[1-58-1218A0001-43127A-827A000-5A32627-46271]
Paso 3.5.6
Multiply each element of R3 by -35A to make the entry at 3,3 a 1.
Paso 3.5.6.1
Multiply each element of R3 by -35A to make the entry at 3,3 a 1.
[1-58-1218A0001-43127A-827A0-35A⋅0-35A⋅0-35A(-5A3)-35A⋅2627-35A(-4627)-35A⋅1]
Paso 3.5.6.2
Simplifica R3.
[1-58-1218A0001-43127A-827A0001-2645A4645A-35A]
[1-58-1218A0001-43127A-827A0001-2645A4645A-35A]
Paso 3.5.7
Perform the row operation R2=R2+43R3 to make the entry at 2,3 a 0.
Paso 3.5.7.1
Perform the row operation R2=R2+43R3 to make the entry at 2,3 a 0.
[1-58-1218A000+43⋅01+43⋅0-43+43⋅1127A+43(-2645A)-827A+43⋅4645A0+43(-35A)001-2645A4645A-35A]
Paso 3.5.7.2
Simplifica R2.
[1-58-1218A00010-1115A1615A-45A001-2645A4645A-35A]
[1-58-1218A00010-1115A1615A-45A001-2645A4645A-35A]
Paso 3.5.8
Perform the row operation R1=R1+12R3 to make the entry at 1,3 a 0.
Paso 3.5.8.1
Perform the row operation R1=R1+12R3 to make the entry at 1,3 a 0.
[1+12⋅0-58+12⋅0-12+12⋅118A+12(-2645A)0+12⋅4645A0+12(-35A)010-1115A1615A-45A001-2645A4645A-35A]
Paso 3.5.8.2
Simplifica R1.
[1-580-59360A2345A-310A010-1115A1615A-45A001-2645A4645A-35A]
[1-580-59360A2345A-310A010-1115A1615A-45A001-2645A4645A-35A]
Paso 3.5.9
Perform the row operation R1=R1+58R2 to make the entry at 1,2 a 0.
Paso 3.5.9.1
Perform the row operation R1=R1+58R2 to make the entry at 1,2 a 0.
[1+58⋅0-58+58⋅10+58⋅0-59360A+58(-1115A)2345A+58⋅1615A-310A+58(-45A)010-1115A1615A-45A001-2645A4645A-35A]
Paso 3.5.9.2
Simplifica R1.
[100-2845A5345A-45A010-1115A1615A-45A001-2645A4645A-35A]
[100-2845A5345A-45A010-1115A1615A-45A001-2645A4645A-35A]
[100-2845A5345A-45A010-1115A1615A-45A001-2645A4645A-35A]
Paso 3.6
The right half of the reduced row echelon form is the inverse.
[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A]
[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A]
Paso 4
Multiply both sides by the inverse of [8A-5A-4AA-4A4A-6A-2A9A].
[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][8A-5A-4AA-4A4A-6A-2A9A]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Paso 5
Paso 5.1
Multiplica [-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][8A-5A-4AA-4A4A-6A-2A9A].
Paso 5.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Paso 5.1.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
[-2845A(8A)+5345AA-45A(-6A)-2845A(-5A)+5345A(-4A)-45A(-2A)-2845A(-4A)+5345A(4A)-45A(9A)-1115A(8A)+1615AA-45A(-6A)-1115A(-5A)+1615A(-4A)-45A(-2A)-1115A(-4A)+1615A(4A)-45A(9A)-2645A(8A)+4645AA-35A(-6A)-2645A(-5A)+4645A(-4A)-35A(-2A)-2645A(-4A)+4645A(4A)-35A(9A)]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Paso 5.1.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
[100010001]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
[100010001]B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Paso 5.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
B=[-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15]
Paso 5.3
Multiplica [-2845A5345A-45A-1115A1615A-45A-2645A4645A-35A][-7259-945-15].
Paso 5.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Paso 5.3.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
B=[-2845A⋅-7+5345A⋅9-45A⋅5-2845A⋅2+5345A⋅-9-45A⋅-1-2845A⋅5+5345A⋅4-45A⋅5-1115A⋅-7+1615A⋅9-45A⋅5-1115A⋅2+1615A⋅-9-45A⋅-1-1115A⋅5+1615A⋅4-45A⋅5-2645A⋅-7+4645A⋅9-35A⋅5-2645A⋅2+4645A⋅-9-35A⋅-1-2645A⋅5+4645A⋅4-35A⋅5]
Paso 5.3.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
B=[49345A-49745A-125A16115A-15415A-175A46145A-43945A-95A]
B=[49345A-49745A-125A16115A-15415A-175A46145A-43945A-95A]
B=[49345A-49745A-125A16115A-15415A-175A46145A-43945A-95A]