Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Paso 1.1
Dos matrices pueden multiplicarse solo si el número de columnas en la primera matriz es igual al número de filas en la segunda matriz. En este caso, la primera matriz es y la segunda matriz es .
Paso 1.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
Paso 1.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Multiplica por .
Paso 2
Escribe como un sistema de ecuaciones lineales
Paso 3
Paso 3.1
Resuelve en .
Paso 3.1.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 3.1.1.1
Resta de ambos lados de la ecuación.
Paso 3.1.1.2
Resta de .
Paso 3.1.2
Divide cada término en por y simplifica.
Paso 3.1.2.1
Divide cada término en por .
Paso 3.1.2.2
Simplifica el lado izquierdo.
Paso 3.1.2.2.1
Cancela el factor común de .
Paso 3.1.2.2.1.1
Cancela el factor común.
Paso 3.1.2.2.1.2
Divide por .
Paso 3.1.2.3
Simplifica el lado derecho.
Paso 3.1.2.3.1
Divide por .
Paso 3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 3.2.1
Resta de ambos lados de la ecuación.
Paso 3.2.2
Resta de .
Paso 3.3
Enumera todas las soluciones.