Matemática discreta Ejemplos

Hallar el determinante de la matriz resultante [[-11,-1,-9],[-14,-12,-1],[-11,-9,-12]][[9,1,20],[4,5,4],[-15,12,-1]]
Paso 1
Multiplica .
Toca para ver más pasos...
Paso 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Paso 1.2
Multiplica cada fila en la primera matriz por cada columna en la segunda matriz.
Paso 1.3
Simplifica cada elemento de la matriz mediante la multiplicación de todas las expresiones.
Paso 2
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Toca para ver más pasos...
Paso 2.1
Consider the corresponding sign chart.
Paso 2.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Paso 2.3
The minor for is the determinant with row and column deleted.
Paso 2.4
Multiply element by its cofactor.
Paso 2.5
The minor for is the determinant with row and column deleted.
Paso 2.6
Multiply element by its cofactor.
Paso 2.7
The minor for is the determinant with row and column deleted.
Paso 2.8
Multiply element by its cofactor.
Paso 2.9
Add the terms together.
Paso 3
Evalúa .
Toca para ver más pasos...
Paso 3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1
Multiplica por .
Paso 3.2.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.2.1.2.1
Multiplica por .
Paso 3.2.1.2.2
Multiplica por .
Paso 3.2.2
Resta de .
Paso 4
Evalúa .
Toca para ver más pasos...
Paso 4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Multiplica por .
Paso 4.2.1.2
Multiplica por .
Paso 4.2.2
Suma y .
Paso 5
Evalúa .
Toca para ver más pasos...
Paso 5.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Multiplica por .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.2
Suma y .
Paso 6
Simplifica el determinante.
Toca para ver más pasos...
Paso 6.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.1.1
Multiplica por .
Paso 6.1.2
Multiplica por .
Paso 6.1.3
Multiplica por .
Paso 6.2
Suma y .
Paso 6.3
Resta de .