Matemática discreta Ejemplos

Hallar la pendiente para cada ecuación y=-1/3x+3 , -3x+y=-7
,
Paso 1
Reescribe en ecuación explícita.
Toca para ver más pasos...
Paso 1.1
La ecuación explícita es , donde es la pendiente y es la intersección con y.
Paso 1.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.1
Combina y .
Paso 1.3
Escribe en la forma .
Toca para ver más pasos...
Paso 1.3.1
Reordena los términos.
Paso 1.3.2
Elimina los paréntesis.
Paso 2
Mediante la ecuación explícita, la pendiente es .
Paso 3
Reescribe en ecuación explícita.
Toca para ver más pasos...
Paso 3.1
La ecuación explícita es , donde es la pendiente y es la intersección con y.
Paso 3.2
Suma a ambos lados de la ecuación.
Paso 3.3
Reordena y .
Paso 4
Mediante la ecuación explícita, la pendiente es .
Paso 5
Resuelve el sistema de ecuaciones para obtener los puntos de intersección.
Paso 6
Resuelve el sistema de ecuaciones para obtener el punto de intersección.
Toca para ver más pasos...
Paso 6.1
Combina y .
Paso 6.2
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 6.2.1
Reemplaza todos los casos de en por .
Paso 6.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 6.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 6.2.2.1.1
Elimina los paréntesis.
Paso 6.2.2.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.2.2.1.3
Simplifica los términos.
Toca para ver más pasos...
Paso 6.2.2.1.3.1
Combina y .
Paso 6.2.2.1.3.2
Combina los numeradores sobre el denominador común.
Paso 6.2.2.1.4
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.2.1.4.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.2.2.1.4.1.1
Factoriza de .
Toca para ver más pasos...
Paso 6.2.2.1.4.1.1.1
Factoriza de .
Paso 6.2.2.1.4.1.1.2
Factoriza de .
Paso 6.2.2.1.4.1.1.3
Factoriza de .
Paso 6.2.2.1.4.1.2
Multiplica por .
Paso 6.2.2.1.4.1.3
Resta de .
Paso 6.2.2.1.4.2
Mueve a la izquierda de .
Paso 6.2.2.1.4.3
Mueve el negativo al frente de la fracción.
Paso 6.3
Resuelve en .
Toca para ver más pasos...
Paso 6.3.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 6.3.1.1
Resta de ambos lados de la ecuación.
Paso 6.3.1.2
Resta de .
Paso 6.3.2
Multiplica ambos lados de la ecuación por .
Paso 6.3.3
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 6.3.3.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 6.3.3.1.1
Simplifica .
Toca para ver más pasos...
Paso 6.3.3.1.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.3.3.1.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 6.3.3.1.1.1.2
Mueve el signo menos inicial en al numerador.
Paso 6.3.3.1.1.1.3
Factoriza de .
Paso 6.3.3.1.1.1.4
Cancela el factor común.
Paso 6.3.3.1.1.1.5
Reescribe la expresión.
Paso 6.3.3.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.3.3.1.1.2.1
Factoriza de .
Paso 6.3.3.1.1.2.2
Cancela el factor común.
Paso 6.3.3.1.1.2.3
Reescribe la expresión.
Paso 6.3.3.1.1.3
Multiplica.
Toca para ver más pasos...
Paso 6.3.3.1.1.3.1
Multiplica por .
Paso 6.3.3.1.1.3.2
Multiplica por .
Paso 6.3.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 6.3.3.2.1
Simplifica .
Toca para ver más pasos...
Paso 6.3.3.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.3.3.2.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 6.3.3.2.1.1.2
Factoriza de .
Paso 6.3.3.2.1.1.3
Cancela el factor común.
Paso 6.3.3.2.1.1.4
Reescribe la expresión.
Paso 6.3.3.2.1.2
Multiplica por .
Paso 6.4
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 6.4.1
Reemplaza todos los casos de en por .
Paso 6.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 6.4.2.1
Simplifica .
Toca para ver más pasos...
Paso 6.4.2.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.4.2.1.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.4.2.1.1.1.1
Cancela el factor común.
Paso 6.4.2.1.1.1.2
Reescribe la expresión.
Paso 6.4.2.1.1.2
Multiplica por .
Paso 6.4.2.1.2
Suma y .
Paso 6.5
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 7
Como las pendientes son diferentes, las líneas tendrán exactamente un punto de intersección.
Paso 8