Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
The inverse of a matrix can be found using the formula where is the determinant.
Paso 2
Paso 2.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 2.2
Simplifica el determinante.
Paso 2.2.1
Simplifica cada término.
Paso 2.2.1.1
Multiplica por .
Paso 2.2.1.2
Multiplica por .
Paso 2.2.2
Suma y .
Paso 3
Since the determinant is non-zero, the inverse exists.
Paso 4
Substitute the known values into the formula for the inverse.
Paso 5
Mueve el negativo al frente de la fracción.
Paso 6
Multiplica por cada elemento de la matriz.
Paso 7
Paso 7.1
Multiplica .
Paso 7.1.1
Multiplica por .
Paso 7.1.2
Combina y .
Paso 7.2
Mueve el negativo al frente de la fracción.
Paso 7.3
Cancela el factor común de .
Paso 7.3.1
Mueve el signo menos inicial en al numerador.
Paso 7.3.2
Factoriza de .
Paso 7.3.3
Cancela el factor común.
Paso 7.3.4
Reescribe la expresión.
Paso 7.4
Mueve el negativo al frente de la fracción.
Paso 7.5
Cancela el factor común de .
Paso 7.5.1
Mueve el signo menos inicial en al numerador.
Paso 7.5.2
Factoriza de .
Paso 7.5.3
Factoriza de .
Paso 7.5.4
Cancela el factor común.
Paso 7.5.5
Reescribe la expresión.
Paso 7.6
Combina y .
Paso 7.7
Multiplica por .
Paso 7.8
Cancela el factor común de .
Paso 7.8.1
Mueve el signo menos inicial en al numerador.
Paso 7.8.2
Factoriza de .
Paso 7.8.3
Factoriza de .
Paso 7.8.4
Cancela el factor común.
Paso 7.8.5
Reescribe la expresión.
Paso 7.9
Combina y .
Paso 7.10
Multiplica por .