Matemática discreta Ejemplos

Hallar la inversa [[5,5,0],[0,-5,-5],[3,0,-3]]
Paso 1
Find the determinant.
Toca para ver más pasos...
Paso 1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Toca para ver más pasos...
Paso 1.1.1
Consider the corresponding sign chart.
Paso 1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Paso 1.1.3
The minor for is the determinant with row and column deleted.
Paso 1.1.4
Multiply element by its cofactor.
Paso 1.1.5
The minor for is the determinant with row and column deleted.
Paso 1.1.6
Multiply element by its cofactor.
Paso 1.1.7
The minor for is the determinant with row and column deleted.
Paso 1.1.8
Multiply element by its cofactor.
Paso 1.1.9
Add the terms together.
Paso 1.2
Multiplica por .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 1.3.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.2.1.1
Multiplica por .
Paso 1.3.2.1.2
Multiplica por .
Paso 1.3.2.2
Suma y .
Paso 1.4
Evalúa .
Toca para ver más pasos...
Paso 1.4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 1.4.2
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.1.1
Multiplica por .
Paso 1.4.2.1.2
Multiplica por .
Paso 1.4.2.2
Suma y .
Paso 1.5
Simplifica el determinante.
Toca para ver más pasos...
Paso 1.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.5.1.1
Multiplica por .
Paso 1.5.1.2
Multiplica por .
Paso 1.5.2
Resta de .
Paso 1.5.3
Suma y .
Paso 2
There is no inverse because the determinant is .