Ingresa un problema...
Matemática discreta Ejemplos
Paso 1
Establece la fórmula para obtener la ecuación característica .
Paso 2
La matriz de identidades o matriz unidad de tamaño es la matriz cuadrada con unos en la diagonal principal y ceros en los otros lugares.
Paso 3
Paso 3.1
Sustituye por .
Paso 3.2
Sustituye por .
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Multiplica por cada elemento de la matriz.
Paso 4.1.2
Simplifica cada elemento de la matriz.
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.2
Multiplica .
Paso 4.1.2.2.1
Multiplica por .
Paso 4.1.2.2.2
Multiplica por .
Paso 4.1.2.3
Multiplica .
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Multiplica .
Paso 4.1.2.4.1
Multiplica por .
Paso 4.1.2.4.2
Multiplica por .
Paso 4.1.2.5
Multiplica por .
Paso 4.1.2.6
Multiplica .
Paso 4.1.2.6.1
Multiplica por .
Paso 4.1.2.6.2
Multiplica por .
Paso 4.1.2.7
Multiplica .
Paso 4.1.2.7.1
Multiplica por .
Paso 4.1.2.7.2
Multiplica por .
Paso 4.1.2.8
Multiplica .
Paso 4.1.2.8.1
Multiplica por .
Paso 4.1.2.8.2
Multiplica por .
Paso 4.1.2.9
Multiplica por .
Paso 4.2
Suma los elementos correspondientes.
Paso 4.3
Simplify each element.
Paso 4.3.1
Suma y .
Paso 4.3.2
Suma y .
Paso 4.3.3
Suma y .
Paso 4.3.4
Resta de .
Paso 4.3.5
Suma y .
Paso 4.3.6
Suma y .
Paso 4.3.7
Suma y .
Paso 5
Paso 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Paso 5.1.1
Consider the corresponding sign chart.
Paso 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Paso 5.1.3
The minor for is the determinant with row and column deleted.
Paso 5.1.4
Multiply element by its cofactor.
Paso 5.1.5
The minor for is the determinant with row and column deleted.
Paso 5.1.6
Multiply element by its cofactor.
Paso 5.1.7
The minor for is the determinant with row and column deleted.
Paso 5.1.8
Multiply element by its cofactor.
Paso 5.1.9
Add the terms together.
Paso 5.2
Multiplica por .
Paso 5.3
Evalúa .
Paso 5.3.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.3.2
Simplifica el determinante.
Paso 5.3.2.1
Simplifica cada término.
Paso 5.3.2.1.1
Aplica la propiedad distributiva.
Paso 5.3.2.1.2
Multiplica por .
Paso 5.3.2.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.3.2.1.4
Simplifica cada término.
Paso 5.3.2.1.4.1
Multiplica por sumando los exponentes.
Paso 5.3.2.1.4.1.1
Mueve .
Paso 5.3.2.1.4.1.2
Multiplica por .
Paso 5.3.2.1.4.2
Multiplica por .
Paso 5.3.2.1.4.3
Multiplica por .
Paso 5.3.2.1.5
Multiplica por .
Paso 5.3.2.2
Reordena y .
Paso 5.4
Evalúa .
Paso 5.4.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 5.4.2
Simplifica el determinante.
Paso 5.4.2.1
Simplifica cada término.
Paso 5.4.2.1.1
Aplica la propiedad distributiva.
Paso 5.4.2.1.2
Cancela el factor común de .
Paso 5.4.2.1.2.1
Factoriza de .
Paso 5.4.2.1.2.2
Cancela el factor común.
Paso 5.4.2.1.2.3
Reescribe la expresión.
Paso 5.4.2.1.3
Multiplica por .
Paso 5.4.2.1.4
Combina y .
Paso 5.4.2.1.5
Multiplica por .
Paso 5.4.2.2
Suma y .
Paso 5.5
Simplifica el determinante.
Paso 5.5.1
Suma y .
Paso 5.5.2
Simplifica cada término.
Paso 5.5.2.1
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 5.5.2.2
Simplifica cada término.
Paso 5.5.2.2.1
Multiplica por .
Paso 5.5.2.2.2
Multiplica por .
Paso 5.5.2.2.3
Multiplica por sumando los exponentes.
Paso 5.5.2.2.3.1
Mueve .
Paso 5.5.2.2.3.2
Multiplica por .
Paso 5.5.2.2.3.2.1
Eleva a la potencia de .
Paso 5.5.2.2.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 5.5.2.2.3.3
Suma y .
Paso 5.5.2.2.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.5.2.2.5
Multiplica por sumando los exponentes.
Paso 5.5.2.2.5.1
Mueve .
Paso 5.5.2.2.5.2
Multiplica por .
Paso 5.5.2.2.6
Multiplica por .
Paso 5.5.2.2.7
Multiplica por .
Paso 5.5.2.3
Suma y .
Paso 5.5.2.4
Resta de .
Paso 5.5.2.5
Aplica la propiedad distributiva.
Paso 5.5.2.6
Multiplica .
Paso 5.5.2.6.1
Multiplica por .
Paso 5.5.2.6.2
Multiplica por .
Paso 5.5.2.7
Multiplica por .
Paso 5.5.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.5.4
Combina y .
Paso 5.5.5
Combina los numeradores sobre el denominador común.
Paso 5.5.6
Simplifica cada término.
Paso 5.5.6.1
Simplifica el numerador.
Paso 5.5.6.1.1
Factoriza de .
Paso 5.5.6.1.1.1
Factoriza de .
Paso 5.5.6.1.1.2
Factoriza de .
Paso 5.5.6.1.1.3
Factoriza de .
Paso 5.5.6.1.2
Multiplica por .
Paso 5.5.6.1.3
Suma y .
Paso 5.5.6.2
Mueve a la izquierda de .
Paso 5.5.6.3
Mueve el negativo al frente de la fracción.
Paso 5.5.7
Resta de .
Paso 5.5.8
Reordena y .
Paso 6
Establece el polinomio característico igual a para obtener los valores propios .
Paso 7
Paso 7.1
Grafica cada lado de la ecuación. La solución es el valor x del punto de intersección.