Ingresa un problema...
Matemática discreta Ejemplos
, , , ,
Paso 1
Paso 1.1
La media de un conjunto de números es la suma dividida por la cantidad de términos.
Paso 1.2
Simplifica el numerador.
Paso 1.2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.2
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 1.2.2.1
Multiplica por .
Paso 1.2.2.2
Multiplica por .
Paso 1.2.3
Combina los numeradores sobre el denominador común.
Paso 1.2.4
Suma y .
Paso 1.2.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.6
Combina y .
Paso 1.2.7
Combina los numeradores sobre el denominador común.
Paso 1.2.8
Simplifica el numerador.
Paso 1.2.8.1
Multiplica por .
Paso 1.2.8.2
Resta de .
Paso 1.2.9
Suma y .
Paso 1.2.10
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.11
Combina y .
Paso 1.2.12
Combina los numeradores sobre el denominador común.
Paso 1.2.13
Simplifica el numerador.
Paso 1.2.13.1
Multiplica por .
Paso 1.2.13.2
Suma y .
Paso 1.3
Multiplica el numerador por la recíproca del denominador.
Paso 1.4
Multiplica .
Paso 1.4.1
Multiplica por .
Paso 1.4.2
Multiplica por .
Paso 1.5
Divide.
Paso 1.6
La media debería redondearse a una cifra decimal más que los datos originales. Si los datos originales fueran mixtos, redondea a una cifra decimal más que el dato menos preciso.
Paso 2
Paso 2.1
Convierte en un valor decimal.
Paso 2.2
Convierte en un valor decimal.
Paso 2.3
Convierte en un valor decimal.
Paso 2.4
Convierte en un valor decimal.
Paso 2.5
Convierte en un valor decimal.
Paso 2.6
Los valores simplificados son .
Paso 3
Establece la fórmula para la desviación estándar de la muestra. La desviación estándar de un conjunto de valores es una medida de la propagación de sus valores.
Paso 4
Establece la fórmula para la desviación estándar de este conjunto de números.
Paso 5
Paso 5.1
Resta de .
Paso 5.2
Eleva a la potencia de .
Paso 5.3
Resta de .
Paso 5.4
Eleva a la potencia de .
Paso 5.5
Resta de .
Paso 5.6
Eleva a la potencia de .
Paso 5.7
Resta de .
Paso 5.8
Eleva a la potencia de .
Paso 5.9
Resta de .
Paso 5.10
Eleva a la potencia de .
Paso 5.11
Suma y .
Paso 5.12
Suma y .
Paso 5.13
Suma y .
Paso 5.14
Suma y .
Paso 5.15
Resta de .
Paso 5.16
Divide por .
Paso 6
La desviación estándar debería redondearse a una cifra decimal más que los datos originales. Si los datos originales fueran mixtos, redondea a una cifra decimal más que el dato menos preciso.