Matemática discreta Ejemplos

Hallar la varianza 4 , 8 , 12 , 18 , 20 , 22 , 26 , 3
, , , , , , ,
Paso 1
La media de un conjunto de números es la suma dividida por la cantidad de términos.
Paso 2
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.1
Suma y .
Paso 2.2
Suma y .
Paso 2.3
Suma y .
Paso 2.4
Suma y .
Paso 2.5
Suma y .
Paso 2.6
Suma y .
Paso 2.7
Suma y .
Paso 3
Divide.
Paso 4
La media debería redondearse a una cifra decimal más que los datos originales. Si los datos originales fueran mixtos, redondea a una cifra decimal más que el dato menos preciso.
Paso 5
Establece la fórmula para la varianza. La varianza de un conjunto de valores es una medida de la propagación de sus valores.
Paso 6
Establece la fórmula para la varianza de este conjunto de números.
Paso 7
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.1.1
Resta de .
Paso 7.1.2
Eleva a la potencia de .
Paso 7.1.3
Resta de .
Paso 7.1.4
Eleva a la potencia de .
Paso 7.1.5
Resta de .
Paso 7.1.6
Eleva a la potencia de .
Paso 7.1.7
Resta de .
Paso 7.1.8
Eleva a la potencia de .
Paso 7.1.9
Resta de .
Paso 7.1.10
Eleva a la potencia de .
Paso 7.1.11
Resta de .
Paso 7.1.12
Eleva a la potencia de .
Paso 7.1.13
Resta de .
Paso 7.1.14
Eleva a la potencia de .
Paso 7.1.15
Resta de .
Paso 7.1.16
Eleva a la potencia de .
Paso 7.1.17
Suma y .
Paso 7.1.18
Suma y .
Paso 7.1.19
Suma y .
Paso 7.1.20
Suma y .
Paso 7.1.21
Suma y .
Paso 7.1.22
Suma y .
Paso 7.1.23
Suma y .
Paso 7.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 7.2.1
Resta de .
Paso 7.2.2
Divide por .
Paso 8
Aproxima el resultado.