Cálculo Ejemplos

Evaluar utilizando la regla de L'Hôpital límite a medida que x se aproxima a infinity de ( logaritmo natural de x)/x
Paso 1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
A medida que el logaritmo se acerca al infinito, el valor va a .
Paso 1.3
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
La derivada de con respecto a es .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4
Multiplica el numerador por la recíproca del denominador.
Paso 5
Multiplica por .
Paso 6
Como su numerador se acerca a un número real mientras que su denominador no está acotado, la fracción se acerca a .