Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
+ | + |
Paso 1.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
+ | + |
Paso 1.3
Multiplica el nuevo término del cociente por el divisor.
+ | + | ||||||
+ | + |
Paso 1.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
+ | + | ||||||
- | - |
Paso 1.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
+ | + | ||||||
- | - | ||||||
- |
Paso 1.6
La respuesta final es el cociente más el resto sobre el divisor.
Paso 2
Divide la única integral en varias integrales.
Paso 3
Aplica la regla de la constante.
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
Paso 5.1
Deja . Obtén .
Paso 5.1.1
Diferencia .
Paso 5.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 5.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.5
Suma y .
Paso 5.2
Sustituye el límite inferior por en .
Paso 5.3
Suma y .
Paso 5.4
Sustituye el límite superior por en .
Paso 5.5
Suma y .
Paso 5.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 5.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 6
La integral de con respecto a es .
Paso 7
Paso 7.1
Evalúa en y en .
Paso 7.2
Evalúa en y en .
Paso 7.3
Suma y .
Paso 8
Usa la propiedad del cociente de los logaritmos, .
Paso 9
Paso 9.1
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 9.2
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 9.3
Divide por .
Paso 10
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Paso 11