Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Descompone la fracción y multiplica por el denominador común.
Paso 1.1.1
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 1.1.2
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 1.1.3
Multiplica cada fracción en la ecuación por el denominador de la expresión original. En este caso, el denominador es .
Paso 1.1.4
Cancela el factor común de .
Paso 1.1.4.1
Cancela el factor común.
Paso 1.1.4.2
Reescribe la expresión.
Paso 1.1.5
Cancela el factor común de .
Paso 1.1.5.1
Cancela el factor común.
Paso 1.1.5.2
Reescribe la expresión.
Paso 1.1.6
Cancela el factor común de .
Paso 1.1.6.1
Cancela el factor común.
Paso 1.1.6.2
Divide por .
Paso 1.1.7
Simplifica cada término.
Paso 1.1.7.1
Cancela el factor común de .
Paso 1.1.7.1.1
Cancela el factor común.
Paso 1.1.7.1.2
Divide por .
Paso 1.1.7.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.1.7.2.1
Aplica la propiedad distributiva.
Paso 1.1.7.2.2
Aplica la propiedad distributiva.
Paso 1.1.7.2.3
Aplica la propiedad distributiva.
Paso 1.1.7.3
Simplifica y combina los términos similares.
Paso 1.1.7.3.1
Simplifica cada término.
Paso 1.1.7.3.1.1
Multiplica por .
Paso 1.1.7.3.1.2
Mueve a la izquierda de .
Paso 1.1.7.3.1.3
Multiplica por .
Paso 1.1.7.3.2
Suma y .
Paso 1.1.7.4
Aplica la propiedad distributiva.
Paso 1.1.7.5
Simplifica.
Paso 1.1.7.5.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.1.7.5.2
Mueve a la izquierda de .
Paso 1.1.7.6
Cancela el factor común de .
Paso 1.1.7.6.1
Cancela el factor común.
Paso 1.1.7.6.2
Divide por .
Paso 1.1.7.7
Aplica la propiedad distributiva.
Paso 1.1.7.8
Multiplica por .
Paso 1.1.7.9
Mueve a la izquierda de .
Paso 1.1.7.10
Aplica la propiedad distributiva.
Paso 1.1.7.11
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.1.7.12
Cancela el factor común de .
Paso 1.1.7.12.1
Cancela el factor común.
Paso 1.1.7.12.2
Divide por .
Paso 1.1.7.13
Aplica la propiedad distributiva.
Paso 1.1.7.14
Multiplica por .
Paso 1.1.7.15
Mueve a la izquierda de .
Paso 1.1.7.16
Aplica la propiedad distributiva.
Paso 1.1.7.17
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.1.8
Simplifica la expresión.
Paso 1.1.8.1
Mueve .
Paso 1.1.8.2
Reordena y .
Paso 1.1.8.3
Mueve .
Paso 1.1.8.4
Mueve .
Paso 1.1.8.5
Mueve .
Paso 1.1.8.6
Mueve .
Paso 1.2
Crea ecuaciones para las variables de fracción simple y úsalas para establecer un sistema de ecuaciones.
Paso 1.2.1
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.2
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.3
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de los términos que no contienen . Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.4
Establece el sistema de ecuaciones para obtener los coeficientes de las fracciones parciales.
Paso 1.3
Resuelve el sistema de ecuaciones.
Paso 1.3.1
Resuelve en .
Paso 1.3.1.1
Reescribe la ecuación como .
Paso 1.3.1.2
Divide cada término en por y simplifica.
Paso 1.3.1.2.1
Divide cada término en por .
Paso 1.3.1.2.2
Simplifica el lado izquierdo.
Paso 1.3.1.2.2.1
Cancela el factor común de .
Paso 1.3.1.2.2.1.1
Cancela el factor común.
Paso 1.3.1.2.2.1.2
Divide por .
Paso 1.3.1.2.3
Simplifica el lado derecho.
Paso 1.3.1.2.3.1
Divide por .
Paso 1.3.2
Reemplaza todos los casos de por en cada ecuación.
Paso 1.3.2.1
Reemplaza todos los casos de en por .
Paso 1.3.2.2
Simplifica el lado derecho.
Paso 1.3.2.2.1
Elimina los paréntesis.
Paso 1.3.2.3
Reemplaza todos los casos de en por .
Paso 1.3.2.4
Simplifica el lado derecho.
Paso 1.3.2.4.1
Multiplica por .
Paso 1.3.3
Resuelve en .
Paso 1.3.3.1
Reescribe la ecuación como .
Paso 1.3.3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 1.3.3.2.1
Resta de ambos lados de la ecuación.
Paso 1.3.3.2.2
Resta de ambos lados de la ecuación.
Paso 1.3.3.2.3
Resta de .
Paso 1.3.4
Reemplaza todos los casos de por en cada ecuación.
Paso 1.3.4.1
Reemplaza todos los casos de en por .
Paso 1.3.4.2
Simplifica el lado derecho.
Paso 1.3.4.2.1
Simplifica .
Paso 1.3.4.2.1.1
Simplifica cada término.
Paso 1.3.4.2.1.1.1
Aplica la propiedad distributiva.
Paso 1.3.4.2.1.1.2
Multiplica por .
Paso 1.3.4.2.1.1.3
Multiplica por .
Paso 1.3.4.2.1.2
Simplifica mediante la adición de términos.
Paso 1.3.4.2.1.2.1
Resta de .
Paso 1.3.4.2.1.2.2
Suma y .
Paso 1.3.5
Resuelve en .
Paso 1.3.5.1
Reescribe la ecuación como .
Paso 1.3.5.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 1.3.5.2.1
Suma a ambos lados de la ecuación.
Paso 1.3.5.2.2
Suma y .
Paso 1.3.5.3
Divide cada término en por y simplifica.
Paso 1.3.5.3.1
Divide cada término en por .
Paso 1.3.5.3.2
Simplifica el lado izquierdo.
Paso 1.3.5.3.2.1
Cancela el factor común de .
Paso 1.3.5.3.2.1.1
Cancela el factor común.
Paso 1.3.5.3.2.1.2
Divide por .
Paso 1.3.6
Reemplaza todos los casos de por en cada ecuación.
Paso 1.3.6.1
Reemplaza todos los casos de en por .
Paso 1.3.6.2
Simplifica el lado derecho.
Paso 1.3.6.2.1
Simplifica .
Paso 1.3.6.2.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.3.6.2.1.2
Combina y .
Paso 1.3.6.2.1.3
Combina los numeradores sobre el denominador común.
Paso 1.3.6.2.1.4
Simplifica el numerador.
Paso 1.3.6.2.1.4.1
Multiplica por .
Paso 1.3.6.2.1.4.2
Resta de .
Paso 1.3.7
Enumera todas las soluciones.
Paso 1.4
Reemplaza cada uno de los coeficientes de fracción simple en con los valores obtenidos para , y .
Paso 1.5
Simplifica.
Paso 1.5.1
Multiplica el numerador por la recíproca del denominador.
Paso 1.5.2
Multiplica por .
Paso 1.5.3
Multiplica el numerador por la recíproca del denominador.
Paso 1.5.4
Multiplica por .
Paso 2
Divide la única integral en varias integrales.
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
La integral de con respecto a es .
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Paso 6.1
Deja . Obtén .
Paso 6.1.1
Diferencia .
Paso 6.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 6.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.1.5
Suma y .
Paso 6.2
Sustituye el límite inferior por en .
Paso 6.3
Suma y .
Paso 6.4
Sustituye el límite superior por en .
Paso 6.5
Suma y .
Paso 6.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 6.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 7
La integral de con respecto a es .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Paso 9.1
Deja . Obtén .
Paso 9.1.1
Diferencia .
Paso 9.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 9.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 9.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 9.1.5
Suma y .
Paso 9.2
Sustituye el límite inferior por en .
Paso 9.3
Resta de .
Paso 9.4
Sustituye el límite superior por en .
Paso 9.5
Resta de .
Paso 9.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 9.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 10
La integral de con respecto a es .
Paso 11
Paso 11.1
Evalúa en y en .
Paso 11.2
Evalúa en y en .
Paso 11.3
Evalúa en y en .
Paso 11.4
Elimina los paréntesis.
Paso 12
Paso 12.1
Usa la propiedad del cociente de los logaritmos, .
Paso 12.2
Usa la propiedad del cociente de los logaritmos, .
Paso 12.3
Combina y .
Paso 12.4
Usa la propiedad del cociente de los logaritmos, .
Paso 12.5
Combina y .
Paso 13
Paso 13.1
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 13.2
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 13.3
Divide por .
Paso 13.4
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 13.5
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 13.6
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 13.7
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 14
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Paso 15