Cálculo Ejemplos

Evalúe la integral integral de 15(y^6+4y^3+3)^3(2y^5+4y^2) con respecto a y
Paso 1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.1.1
Diferencia .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
Reescribe el problema mediante y .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Reescribe como .
Toca para ver más pasos...
Paso 3.1.1
Usa para reescribir como .
Paso 3.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.1.3
Combina y .
Paso 3.1.4
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.1.4.1
Factoriza de .
Paso 3.1.4.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.1.4.2.1
Factoriza de .
Paso 3.1.4.2.2
Cancela el factor común.
Paso 3.1.4.2.3
Reescribe la expresión.
Paso 3.1.4.2.4
Divide por .
Paso 3.2
Reescribe como .
Paso 3.3
Reescribe como .
Toca para ver más pasos...
Paso 3.3.1
Usa para reescribir como .
Paso 3.3.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.3
Combina y .
Paso 3.3.4
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.3.4.1
Factoriza de .
Paso 3.3.4.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.3.4.2.1
Factoriza de .
Paso 3.3.4.2.2
Cancela el factor común.
Paso 3.3.4.2.3
Reescribe la expresión.
Paso 3.3.4.2.4
Divide por .
Paso 4
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.1.1
Diferencia .
Paso 4.1.2
Diferencia.
Toca para ver más pasos...
Paso 4.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3
Evalúa .
Toca para ver más pasos...
Paso 4.1.3.1
Usa para reescribir como .
Paso 4.1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.4
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.3.5
Combina y .
Paso 4.1.3.6
Combina los numeradores sobre el denominador común.
Paso 4.1.3.7
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.3.7.1
Multiplica por .
Paso 4.1.3.7.2
Resta de .
Paso 4.1.3.8
Combina y .
Paso 4.1.3.9
Combina y .
Paso 4.1.3.10
Multiplica por .
Paso 4.1.3.11
Factoriza de .
Paso 4.1.3.12
Cancela los factores comunes.
Toca para ver más pasos...
Paso 4.1.3.12.1
Factoriza de .
Paso 4.1.3.12.2
Cancela el factor común.
Paso 4.1.3.12.3
Reescribe la expresión.
Paso 4.1.3.12.4
Divide por .
Paso 4.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 4.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.4.2
Suma y .
Paso 4.1.5
Reescribe como un radical.
Paso 4.2
Reescribe el problema mediante y .
Paso 5
Combina y .
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Simplifica.
Toca para ver más pasos...
Paso 7.1
Combina y .
Paso 7.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 7.2.1
Factoriza de .
Paso 7.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 7.2.2.1
Factoriza de .
Paso 7.2.2.2
Cancela el factor común.
Paso 7.2.2.3
Reescribe la expresión.
Paso 7.2.2.4
Divide por .
Paso 8
Según la regla de la potencia, la integral de con respecto a es .
Paso 9
Simplifica.
Toca para ver más pasos...
Paso 9.1
Reescribe como .
Paso 9.2
Combina y .
Paso 10
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 10.1
Reemplaza todos los casos de con .
Paso 10.2
Reemplaza todos los casos de con .