Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtener la segunda derivada.
Paso 1.1.1
Obtén la primera derivada.
Paso 1.1.1.1
Aplica reglas básicas de exponentes.
Paso 1.1.1.1.1
Reescribe como .
Paso 1.1.1.1.2
Multiplica los exponentes en .
Paso 1.1.1.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.1.1.1.2.2
Multiplica por .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3
Simplifica.
Paso 1.1.1.3.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.1.1.3.2
Combina los términos.
Paso 1.1.1.3.2.1
Combina y .
Paso 1.1.1.3.2.2
Mueve el negativo al frente de la fracción.
Paso 1.1.2
Obtener la segunda derivada.
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Aplica reglas básicas de exponentes.
Paso 1.1.2.2.1
Reescribe como .
Paso 1.1.2.2.2
Multiplica los exponentes en .
Paso 1.1.2.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.1.2.2.2.2
Multiplica por .
Paso 1.1.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.4
Multiplica por .
Paso 1.1.2.5
Simplifica.
Paso 1.1.2.5.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.1.2.5.2
Combina y .
Paso 1.1.3
La segunda derivada de con respecto a es .
Paso 1.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Paso 1.2.1
Establece la segunda derivada igual a .
Paso 1.2.2
Establece el numerador igual a cero.
Paso 1.2.3
Como , no hay soluciones.
No hay solución
No hay solución
No hay solución
Paso 2
Paso 2.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2.2
Resuelve
Paso 2.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.2.2
Simplifica .
Paso 2.2.2.1
Reescribe como .
Paso 2.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.2.2.3
Más o menos es .
Paso 2.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
Crea intervalos alrededor de los valores de donde la segunda derivada es cero o indefinida.
Paso 4
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Paso 4.2.1
Eleva a la potencia de .
Paso 4.2.2
Cancela el factor común de y .
Paso 4.2.2.1
Factoriza de .
Paso 4.2.2.2
Cancela los factores comunes.
Paso 4.2.2.2.1
Factoriza de .
Paso 4.2.2.2.2
Cancela el factor común.
Paso 4.2.2.2.3
Reescribe la expresión.
Paso 4.2.3
La respuesta final es .
Paso 4.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Eleva a la potencia de .
Paso 5.2.2
Cancela el factor común de y .
Paso 5.2.2.1
Factoriza de .
Paso 5.2.2.2
Cancela los factores comunes.
Paso 5.2.2.2.1
Factoriza de .
Paso 5.2.2.2.2
Cancela el factor común.
Paso 5.2.2.2.3
Reescribe la expresión.
Paso 5.2.3
La respuesta final es .
Paso 5.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 6
La gráfica es cóncava cuando la segunda derivada es negativa y convexa cuando la segunda derivada es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 7