Cálculo Ejemplos

Hallar los puntos de inflexión y=x logaritmo natural de x
Paso 1
Escribe como una función.
Paso 2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.1.2
La derivada de con respecto a es .
Paso 2.1.3
Diferencia con la regla de la potencia.
Toca para ver más pasos...
Paso 2.1.3.1
Combina y .
Paso 2.1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.1.3.2.1
Cancela el factor común.
Paso 2.1.3.2.2
Reescribe la expresión.
Paso 2.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3.4
Multiplica por .
Paso 2.2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.2.1
Diferencia.
Toca para ver más pasos...
Paso 2.2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
La derivada de con respecto a es .
Paso 2.2.3
Suma y .
Paso 2.3
La segunda derivada de con respecto a es .
Paso 3
Establece la segunda derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Establece la segunda derivada igual a .
Paso 3.2
Establece el numerador igual a cero.
Paso 3.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 4
No se encontraron valores que puedan hacer que la segunda derivada sea igual a .
No hay puntos de inflexión