Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Obtén la primera derivada.
Paso 2.1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.1.1.2
La derivada de con respecto a es .
Paso 2.1.1.3
Reemplaza todos los casos de con .
Paso 2.1.2
Diferencia.
Paso 2.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.4
Combina fracciones.
Paso 2.1.2.4.1
Suma y .
Paso 2.1.2.4.2
Combina y .
Paso 2.1.2.4.3
Combina y .
Paso 2.2
Obtener la segunda derivada.
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla del cociente, que establece que es donde y .
Paso 2.2.3
Diferencia.
Paso 2.2.3.1
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3.2
Multiplica por .
Paso 2.2.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3.6
Simplifica la expresión.
Paso 2.2.3.6.1
Suma y .
Paso 2.2.3.6.2
Multiplica por .
Paso 2.2.4
Eleva a la potencia de .
Paso 2.2.5
Eleva a la potencia de .
Paso 2.2.6
Usa la regla de la potencia para combinar exponentes.
Paso 2.2.7
Suma y .
Paso 2.2.8
Resta de .
Paso 2.2.9
Combina y .
Paso 2.2.10
Simplifica.
Paso 2.2.10.1
Aplica la propiedad distributiva.
Paso 2.2.10.2
Simplifica cada término.
Paso 2.2.10.2.1
Multiplica por .
Paso 2.2.10.2.2
Multiplica por .
Paso 2.3
La segunda derivada de con respecto a es .
Paso 3
Paso 3.1
Establece la segunda derivada igual a .
Paso 3.2
Establece el numerador igual a cero.
Paso 3.3
Resuelve la ecuación en .
Paso 3.3.1
Resta de ambos lados de la ecuación.
Paso 3.3.2
Divide cada término en por y simplifica.
Paso 3.3.2.1
Divide cada término en por .
Paso 3.3.2.2
Simplifica el lado izquierdo.
Paso 3.3.2.2.1
Cancela el factor común de .
Paso 3.3.2.2.1.1
Cancela el factor común.
Paso 3.3.2.2.1.2
Divide por .
Paso 3.3.2.3
Simplifica el lado derecho.
Paso 3.3.2.3.1
Divide por .
Paso 3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3.3.4
Cualquier raíz de es .
Paso 3.3.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.3.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.3.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.3.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Paso 4.1
Sustituye en para obtener el valor de .
Paso 4.1.1
Reemplaza la variable con en la expresión.
Paso 4.1.2
Simplifica el resultado.
Paso 4.1.2.1
Uno elevado a cualquier potencia es uno.
Paso 4.1.2.2
Suma y .
Paso 4.1.2.3
La respuesta final es .
Paso 4.2
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 4.3
Sustituye en para obtener el valor de .
Paso 4.3.1
Reemplaza la variable con en la expresión.
Paso 4.3.2
Simplifica el resultado.
Paso 4.3.2.1
Eleva a la potencia de .
Paso 4.3.2.2
Suma y .
Paso 4.3.2.3
La respuesta final es .
Paso 4.4
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 4.5
Determinar los puntos que podrían ser puntos de inflexión.
Paso 5
Divide en intervalos alrededor de los puntos que podrían ser puntos de inflexión.
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica el numerador.
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Suma y .
Paso 6.2.2
Simplifica el denominador.
Paso 6.2.2.1
Eleva a la potencia de .
Paso 6.2.2.2
Suma y .
Paso 6.2.2.3
Eleva a la potencia de .
Paso 6.2.3
Divide por .
Paso 6.2.4
La respuesta final es .
Paso 6.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica el numerador.
Paso 7.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.1.3
Suma y .
Paso 7.2.2
Simplifica el denominador.
Paso 7.2.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 7.2.2.2
Suma y .
Paso 7.2.2.3
Uno elevado a cualquier potencia es uno.
Paso 7.2.3
Divide por .
Paso 7.2.4
La respuesta final es .
Paso 7.3
En , la segunda derivada es . Dado que esto es positivo, la segunda derivada aumenta en el intervalo .
Incremento en ya que
Incremento en ya que
Paso 8
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Paso 8.2.1
Simplifica el numerador.
Paso 8.2.1.1
Eleva a la potencia de .
Paso 8.2.1.2
Multiplica por .
Paso 8.2.1.3
Suma y .
Paso 8.2.2
Simplifica el denominador.
Paso 8.2.2.1
Eleva a la potencia de .
Paso 8.2.2.2
Suma y .
Paso 8.2.2.3
Eleva a la potencia de .
Paso 8.2.3
Divide por .
Paso 8.2.4
La respuesta final es .
Paso 8.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Paso 10