Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Obtener la segunda derivada.
Paso 2.1.1
Obtén la primera derivada.
Paso 2.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.1.2
Evalúa .
Paso 2.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.1.2.3
Multiplica por .
Paso 2.1.1.3
Evalúa .
Paso 2.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.1.3.3
Multiplica por .
Paso 2.1.1.4
Evalúa .
Paso 2.1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.1.4.3
Multiplica por .
Paso 2.1.1.5
Evalúa .
Paso 2.1.1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.1.5.3
Multiplica por .
Paso 2.1.1.6
Diferencia con la regla de la constante.
Paso 2.1.1.6.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.6.2
Suma y .
Paso 2.1.2
Obtener la segunda derivada.
Paso 2.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2.2
Evalúa .
Paso 2.1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.2.3
Multiplica por .
Paso 2.1.2.3
Evalúa .
Paso 2.1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3.3
Multiplica por .
Paso 2.1.2.4
Evalúa .
Paso 2.1.2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.4.3
Multiplica por .
Paso 2.1.2.5
Diferencia con la regla de la constante.
Paso 2.1.2.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.5.2
Suma y .
Paso 2.1.3
La segunda derivada de con respecto a es .
Paso 2.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Paso 2.2.1
Establece la segunda derivada igual a .
Paso 2.2.2
Factoriza el lado izquierdo de la ecuación.
Paso 2.2.2.1
Factoriza de .
Paso 2.2.2.1.1
Factoriza de .
Paso 2.2.2.1.2
Factoriza de .
Paso 2.2.2.1.3
Factoriza de .
Paso 2.2.2.1.4
Factoriza de .
Paso 2.2.2.1.5
Factoriza de .
Paso 2.2.2.2
Factoriza.
Paso 2.2.2.2.1
Factoriza por agrupación.
Paso 2.2.2.2.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 2.2.2.2.1.1.1
Factoriza de .
Paso 2.2.2.2.1.1.2
Reescribe como más
Paso 2.2.2.2.1.1.3
Aplica la propiedad distributiva.
Paso 2.2.2.2.1.1.4
Multiplica por .
Paso 2.2.2.2.1.2
Factoriza el máximo común divisor de cada grupo.
Paso 2.2.2.2.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.2.2.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.2.2.2.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.2.2.2.2
Elimina los paréntesis innecesarios.
Paso 2.2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.2.4
Establece igual a y resuelve .
Paso 2.2.4.1
Establece igual a .
Paso 2.2.4.2
Resuelve en .
Paso 2.2.4.2.1
Resta de ambos lados de la ecuación.
Paso 2.2.4.2.2
Divide cada término en por y simplifica.
Paso 2.2.4.2.2.1
Divide cada término en por .
Paso 2.2.4.2.2.2
Simplifica el lado izquierdo.
Paso 2.2.4.2.2.2.1
Cancela el factor común de .
Paso 2.2.4.2.2.2.1.1
Cancela el factor común.
Paso 2.2.4.2.2.2.1.2
Divide por .
Paso 2.2.4.2.2.3
Simplifica el lado derecho.
Paso 2.2.4.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 2.2.5
Establece igual a y resuelve .
Paso 2.2.5.1
Establece igual a .
Paso 2.2.5.2
Suma a ambos lados de la ecuación.
Paso 2.2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 3
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4
Crea intervalos alrededor de los valores de donde la segunda derivada es cero o indefinida.
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Simplifica cada término.
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.1.3
Multiplica por .
Paso 5.2.2
Simplifica mediante suma y resta.
Paso 5.2.2.1
Suma y .
Paso 5.2.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Multiplica por .
Paso 6.2.2
Simplifica mediante suma y resta.
Paso 6.2.2.1
Suma y .
Paso 6.2.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
La gráfica es cóncava en el intervalo porque es negativa.
Cóncavo en dado que es negativo
Cóncavo en dado que es negativo
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Eleva a la potencia de .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.1.3
Multiplica por .
Paso 7.2.2
Simplifica mediante la resta de números.
Paso 7.2.2.1
Resta de .
Paso 7.2.2.2
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 8
La gráfica es cóncava cuando la segunda derivada es negativa y convexa cuando la segunda derivada es positiva.
Convexo en dado que es positivo
Cóncavo en dado que es negativo
Convexo en dado que es positivo
Paso 9