Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Obtén la primera derivada.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Evalúa .
Paso 2.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3
Multiplica por .
Paso 2.1.3
Evalúa .
Paso 2.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.1.4
Reordena los términos.
Paso 2.2
Obtener la segunda derivada.
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Evalúa .
Paso 2.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.3
Diferencia con la regla de la constante.
Paso 2.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3.2
Suma y .
Paso 2.3
La segunda derivada de con respecto a es .
Paso 3
Paso 3.1
Establece la segunda derivada igual a .
Paso 3.2
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 3.3
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 3.4
No hay soluciones para
No hay solución
No hay solución
Paso 4
No se encontraron valores que puedan hacer que la segunda derivada sea igual a .
No hay puntos de inflexión