Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Obtén la primera derivada.
Paso 2.1.1
Reescribe como .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.2
La primera derivada de con respecto a es .
Paso 3
Paso 3.1
Establece la primera derivada igual a .
Paso 3.2
Establece el numerador igual a cero.
Paso 3.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 4
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos
Paso 5
Paso 5.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 5.2
Resuelve
Paso 5.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5.2.2
Simplifica .
Paso 5.2.2.1
Reescribe como .
Paso 5.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.2.2.3
Más o menos es .
Paso 6
Después de buscar el punto que hace que la derivada sea igual a o indefinida, el intervalo para verificar dónde está aumentando y dónde está disminuyendo es .
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Eleva a la potencia de .
Paso 7.2.2
Cancela el factor común de .
Paso 7.2.2.1
Cancela el factor común.
Paso 7.2.2.2
Reescribe la expresión.
Paso 7.2.3
Multiplica por .
Paso 7.2.4
La respuesta final es .
Paso 7.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Paso 8.2.1
Uno elevado a cualquier potencia es uno.
Paso 8.2.2
Cancela el factor común de .
Paso 8.2.2.1
Cancela el factor común.
Paso 8.2.2.2
Reescribe la expresión.
Paso 8.2.3
Multiplica por .
Paso 8.2.4
La respuesta final es .
Paso 8.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 9
Enumera los intervalos en los que la función aumenta y disminuye.
Decrecimiento en:
Paso 10