Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas y=x^4-3x^3+3x^2-x
Paso 1
Escribe como una función.
Paso 2
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1.1
Diferencia.
Toca para ver más pasos...
Paso 2.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2
Evalúa .
Toca para ver más pasos...
Paso 2.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3
Multiplica por .
Paso 2.1.3
Evalúa .
Toca para ver más pasos...
Paso 2.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3.3
Multiplica por .
Paso 2.1.4
Evalúa .
Toca para ver más pasos...
Paso 2.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.4.3
Multiplica por .
Paso 2.2
La primera derivada de con respecto a es .
Paso 3
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Establece la primera derivada igual a .
Paso 3.2
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.2.1
Factoriza mediante la prueba de raíces racionales.
Toca para ver más pasos...
Paso 3.2.1.1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 3.2.1.2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 3.2.1.3
Sustituye y simplifica la expresión. En este caso, la expresión es igual a , por lo que es una raíz del polinomio.
Toca para ver más pasos...
Paso 3.2.1.3.1
Sustituye en el polinomio.
Paso 3.2.1.3.2
Eleva a la potencia de .
Paso 3.2.1.3.3
Multiplica por .
Paso 3.2.1.3.4
Eleva a la potencia de .
Paso 3.2.1.3.5
Multiplica por .
Paso 3.2.1.3.6
Resta de .
Paso 3.2.1.3.7
Multiplica por .
Paso 3.2.1.3.8
Suma y .
Paso 3.2.1.3.9
Resta de .
Paso 3.2.1.4
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 3.2.1.5
Divide por .
Toca para ver más pasos...
Paso 3.2.1.5.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
--+-
Paso 3.2.1.5.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
--+-
Paso 3.2.1.5.3
Multiplica el nuevo término del cociente por el divisor.
--+-
+-
Paso 3.2.1.5.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
--+-
-+
Paso 3.2.1.5.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
--+-
-+
-
Paso 3.2.1.5.6
Retira los próximos términos del dividendo original hacia el dividendo actual.
--+-
-+
-+
Paso 3.2.1.5.7
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
-
--+-
-+
-+
Paso 3.2.1.5.8
Multiplica el nuevo término del cociente por el divisor.
-
--+-
-+
-+
-+
Paso 3.2.1.5.9
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
-
--+-
-+
-+
+-
Paso 3.2.1.5.10
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
-
--+-
-+
-+
+-
+
Paso 3.2.1.5.11
Retira los próximos términos del dividendo original hacia el dividendo actual.
-
--+-
-+
-+
+-
+-
Paso 3.2.1.5.12
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
-+
--+-
-+
-+
+-
+-
Paso 3.2.1.5.13
Multiplica el nuevo término del cociente por el divisor.
-+
--+-
-+
-+
+-
+-
+-
Paso 3.2.1.5.14
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
-+
--+-
-+
-+
+-
+-
-+
Paso 3.2.1.5.15
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
-+
--+-
-+
-+
+-
+-
-+
Paso 3.2.1.5.16
Como el resto es , la respuesta final es el cociente.
Paso 3.2.1.6
Escribe como un conjunto de factores.
Paso 3.2.2
Factoriza por agrupación.
Toca para ver más pasos...
Paso 3.2.2.1
Factoriza por agrupación.
Toca para ver más pasos...
Paso 3.2.2.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 3.2.2.1.1.1
Factoriza de .
Paso 3.2.2.1.1.2
Reescribe como más
Paso 3.2.2.1.1.3
Aplica la propiedad distributiva.
Paso 3.2.2.1.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 3.2.2.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 3.2.2.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 3.2.2.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 3.2.2.2
Elimina los paréntesis innecesarios.
Paso 3.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.4.1
Establece igual a .
Paso 3.4.2
Suma a ambos lados de la ecuación.
Paso 3.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.5.1
Establece igual a .
Paso 3.5.2
Resuelve en .
Toca para ver más pasos...
Paso 3.5.2.1
Suma a ambos lados de la ecuación.
Paso 3.5.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.5.2.2.1
Divide cada término en por .
Paso 3.5.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.5.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.5.2.2.2.1.1
Cancela el factor común.
Paso 3.5.2.2.2.1.2
Divide por .
Paso 3.6
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Los valores que hacen que la derivada sea igual a son .
Paso 5
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 6
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Eleva a la potencia de .
Paso 6.2.1.4
Multiplica por .
Paso 6.2.1.5
Multiplica por .
Paso 6.2.2
Simplifica mediante la resta de números.
Toca para ver más pasos...
Paso 6.2.2.1
Resta de .
Paso 6.2.2.2
Resta de .
Paso 6.2.2.3
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 7.2.1.1
Eleva a la potencia de .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.1.3
Eleva a la potencia de .
Paso 7.2.1.4
Multiplica por .
Paso 7.2.1.5
Multiplica por .
Paso 7.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 7.2.2.1
Resta de .
Paso 7.2.2.2
Suma y .
Paso 7.2.2.3
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 8
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 8.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 8.2.1.1
Eleva a la potencia de .
Paso 8.2.1.2
Multiplica por .
Paso 8.2.1.3
Eleva a la potencia de .
Paso 8.2.1.4
Multiplica por .
Paso 8.2.1.5
Multiplica por .
Paso 8.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 8.2.2.1
Resta de .
Paso 8.2.2.2
Suma y .
Paso 8.2.2.3
Resta de .
Paso 8.2.3
La respuesta final es .
Paso 8.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 9
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 10