Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Diferencia con la regla de la constante.
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Suma y .
Paso 1.2
Obtener la segunda derivada.
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Evalúa .
Paso 1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.2.3
Multiplica por .
Paso 1.2.3
Evalúa .
Paso 1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3.3
Multiplica por .
Paso 1.3
La segunda derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la segunda derivada igual a .
Paso 2.2
Factoriza de .
Paso 2.2.1
Factoriza de .
Paso 2.2.2
Factoriza de .
Paso 2.2.3
Factoriza de .
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a .
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resuelve en .
Paso 2.5.2.1
Suma a ambos lados de la ecuación.
Paso 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 2.5.2.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.5.2.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.5.2.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.5.2.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Paso 3.1
Sustituye en para obtener el valor de .
Paso 3.1.1
Reemplaza la variable con en la expresión.
Paso 3.1.2
Simplifica el resultado.
Paso 3.1.2.1
Simplifica cada término.
Paso 3.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 3.1.2.1.2
Elevar a cualquier potencia positiva da como resultado .
Paso 3.1.2.1.3
Multiplica por .
Paso 3.1.2.2
Simplifica mediante suma y resta.
Paso 3.1.2.2.1
Suma y .
Paso 3.1.2.2.2
Resta de .
Paso 3.1.2.3
La respuesta final es .
Paso 3.2
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 3.3
Sustituye en para obtener el valor de .
Paso 3.3.1
Reemplaza la variable con en la expresión.
Paso 3.3.2
Simplifica el resultado.
Paso 3.3.2.1
Simplifica cada término.
Paso 3.3.2.1.1
Reescribe como .
Paso 3.3.2.1.2
Eleva a la potencia de .
Paso 3.3.2.1.3
Reescribe como .
Paso 3.3.2.1.3.1
Factoriza de .
Paso 3.3.2.1.3.2
Reescribe como .
Paso 3.3.2.1.4
Retira los términos de abajo del radical.
Paso 3.3.2.1.5
Reescribe como .
Paso 3.3.2.1.6
Eleva a la potencia de .
Paso 3.3.2.1.7
Reescribe como .
Paso 3.3.2.1.7.1
Factoriza de .
Paso 3.3.2.1.7.2
Reescribe como .
Paso 3.3.2.1.8
Retira los términos de abajo del radical.
Paso 3.3.2.1.9
Multiplica por .
Paso 3.3.2.2
Resta de .
Paso 3.3.2.3
La respuesta final es .
Paso 3.4
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 3.5
Sustituye en para obtener el valor de .
Paso 3.5.1
Reemplaza la variable con en la expresión.
Paso 3.5.2
Simplifica el resultado.
Paso 3.5.2.1
Simplifica cada término.
Paso 3.5.2.1.1
Aplica la regla del producto a .
Paso 3.5.2.1.2
Eleva a la potencia de .
Paso 3.5.2.1.3
Reescribe como .
Paso 3.5.2.1.4
Eleva a la potencia de .
Paso 3.5.2.1.5
Reescribe como .
Paso 3.5.2.1.5.1
Factoriza de .
Paso 3.5.2.1.5.2
Reescribe como .
Paso 3.5.2.1.6
Retira los términos de abajo del radical.
Paso 3.5.2.1.7
Multiplica por .
Paso 3.5.2.1.8
Aplica la regla del producto a .
Paso 3.5.2.1.9
Eleva a la potencia de .
Paso 3.5.2.1.10
Reescribe como .
Paso 3.5.2.1.11
Eleva a la potencia de .
Paso 3.5.2.1.12
Reescribe como .
Paso 3.5.2.1.12.1
Factoriza de .
Paso 3.5.2.1.12.2
Reescribe como .
Paso 3.5.2.1.13
Retira los términos de abajo del radical.
Paso 3.5.2.1.14
Multiplica por .
Paso 3.5.2.1.15
Multiplica por .
Paso 3.5.2.2
Suma y .
Paso 3.5.2.3
La respuesta final es .
Paso 3.6
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 3.7
Determinar los puntos que podrían ser puntos de inflexión.
Paso 4
Divide en intervalos alrededor de los puntos que podrían ser puntos de inflexión.
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Simplifica cada término.
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.1.3
Multiplica por .
Paso 5.2.2
Suma y .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Multiplica por .
Paso 6.2.2
Suma y .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En , la segunda derivada es . Dado que esto es positivo, la segunda derivada aumenta en el intervalo .
Incremento en ya que
Incremento en ya que
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Eleva a la potencia de .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.1.3
Multiplica por .
Paso 7.2.2
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Paso 8.2.1
Simplifica cada término.
Paso 8.2.1.1
Eleva a la potencia de .
Paso 8.2.1.2
Multiplica por .
Paso 8.2.1.3
Multiplica por .
Paso 8.2.2
Resta de .
Paso 8.2.3
La respuesta final es .
Paso 8.3
En , la segunda derivada es . Dado que esto es positivo, la segunda derivada aumenta en el intervalo .
Incremento en ya que
Incremento en ya que
Paso 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Paso 10