Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Usa para reescribir como .
Paso 1.1.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.2.3
Reemplaza todos los casos de con .
Paso 1.1.2.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.7
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.2.8
Combina y .
Paso 1.1.2.9
Combina los numeradores sobre el denominador común.
Paso 1.1.2.10
Simplifica el numerador.
Paso 1.1.2.10.1
Multiplica por .
Paso 1.1.2.10.2
Resta de .
Paso 1.1.2.11
Mueve el negativo al frente de la fracción.
Paso 1.1.2.12
Multiplica por .
Paso 1.1.2.13
Resta de .
Paso 1.1.2.14
Combina y .
Paso 1.1.2.15
Combina y .
Paso 1.1.2.16
Mueve a la izquierda de .
Paso 1.1.2.17
Reescribe como .
Paso 1.1.2.18
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.1.2.19
Mueve el negativo al frente de la fracción.
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Resta de ambos lados de la ecuación.
Paso 2.3
Obtén el mcd de los términos en la ecuación.
Paso 2.3.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.3.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 2.4
Multiplica cada término en por para eliminar las fracciones.
Paso 2.4.1
Multiplica cada término en por .
Paso 2.4.2
Simplifica el lado izquierdo.
Paso 2.4.2.1
Cancela el factor común de .
Paso 2.4.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 2.4.2.1.2
Cancela el factor común.
Paso 2.4.2.1.3
Reescribe la expresión.
Paso 2.4.3
Simplifica el lado derecho.
Paso 2.4.3.1
Multiplica por .
Paso 2.5
Resuelve la ecuación.
Paso 2.5.1
Reescribe la ecuación como .
Paso 2.5.2
Divide cada término en por y simplifica.
Paso 2.5.2.1
Divide cada término en por .
Paso 2.5.2.2
Simplifica el lado izquierdo.
Paso 2.5.2.2.1
Cancela el factor común.
Paso 2.5.2.2.2
Divide por .
Paso 2.5.2.3
Simplifica el lado derecho.
Paso 2.5.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.5.3
Eleva cada lado de la ecuación a la potencia de para eliminar el exponente fraccionario en el lado izquierdo.
Paso 2.5.4
Simplifica el exponente.
Paso 2.5.4.1
Simplifica el lado izquierdo.
Paso 2.5.4.1.1
Simplifica .
Paso 2.5.4.1.1.1
Multiplica los exponentes en .
Paso 2.5.4.1.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.5.4.1.1.1.2
Cancela el factor común de .
Paso 2.5.4.1.1.1.2.1
Cancela el factor común.
Paso 2.5.4.1.1.1.2.2
Reescribe la expresión.
Paso 2.5.4.1.1.2
Simplifica.
Paso 2.5.4.2
Simplifica el lado derecho.
Paso 2.5.4.2.1
Simplifica .
Paso 2.5.4.2.1.1
Aplica la regla del producto a .
Paso 2.5.4.2.1.2
Uno elevado a cualquier potencia es uno.
Paso 2.5.4.2.1.3
Eleva a la potencia de .
Paso 2.5.5
Resuelve
Paso 2.5.5.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 2.5.5.1.1
Resta de ambos lados de la ecuación.
Paso 2.5.5.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.5.5.1.3
Combina y .
Paso 2.5.5.1.4
Combina los numeradores sobre el denominador común.
Paso 2.5.5.1.5
Simplifica el numerador.
Paso 2.5.5.1.5.1
Multiplica por .
Paso 2.5.5.1.5.2
Resta de .
Paso 2.5.5.1.6
Mueve el negativo al frente de la fracción.
Paso 2.5.5.2
Divide cada término en por y simplifica.
Paso 2.5.5.2.1
Divide cada término en por .
Paso 2.5.5.2.2
Simplifica el lado izquierdo.
Paso 2.5.5.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.5.5.2.2.2
Divide por .
Paso 2.5.5.2.3
Simplifica el lado derecho.
Paso 2.5.5.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.5.5.2.3.2
Divide por .
Paso 3
Paso 3.1
Convierte las expresiones con exponentes fraccionarios en radicales.
Paso 3.1.1
Aplica la regla para reescribir la exponenciación como un radical.
Paso 3.1.2
Cualquier número elevado a la potencia de es la misma base.
Paso 3.2
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.3
Resuelve
Paso 3.3.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 3.3.2
Simplifica cada lado de la ecuación.
Paso 3.3.2.1
Usa para reescribir como .
Paso 3.3.2.2
Simplifica el lado izquierdo.
Paso 3.3.2.2.1
Simplifica .
Paso 3.3.2.2.1.1
Aplica la regla del producto a .
Paso 3.3.2.2.1.2
Eleva a la potencia de .
Paso 3.3.2.2.1.3
Multiplica los exponentes en .
Paso 3.3.2.2.1.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.2.2.1.3.2
Cancela el factor común de .
Paso 3.3.2.2.1.3.2.1
Cancela el factor común.
Paso 3.3.2.2.1.3.2.2
Reescribe la expresión.
Paso 3.3.2.2.1.4
Simplifica.
Paso 3.3.2.2.1.5
Aplica la propiedad distributiva.
Paso 3.3.2.2.1.6
Multiplica.
Paso 3.3.2.2.1.6.1
Multiplica por .
Paso 3.3.2.2.1.6.2
Multiplica por .
Paso 3.3.2.3
Simplifica el lado derecho.
Paso 3.3.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 3.3.3
Resuelve
Paso 3.3.3.1
Resta de ambos lados de la ecuación.
Paso 3.3.3.2
Divide cada término en por y simplifica.
Paso 3.3.3.2.1
Divide cada término en por .
Paso 3.3.3.2.2
Simplifica el lado izquierdo.
Paso 3.3.3.2.2.1
Cancela el factor común de .
Paso 3.3.3.2.2.1.1
Cancela el factor común.
Paso 3.3.3.2.2.1.2
Divide por .
Paso 3.3.3.2.3
Simplifica el lado derecho.
Paso 3.3.3.2.3.1
Divide por .
Paso 3.4
Establece el radicando en menor que para obtener el lugar donde no está definida la expresión.
Paso 3.5
Resuelve
Paso 3.5.1
Resta de ambos lados de la desigualdad.
Paso 3.5.2
Divide cada término en por y simplifica.
Paso 3.5.2.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 3.5.2.2
Simplifica el lado izquierdo.
Paso 3.5.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.5.2.2.2
Divide por .
Paso 3.5.2.3
Simplifica el lado derecho.
Paso 3.5.2.3.1
Divide por .
Paso 3.6
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica cada término.
Paso 4.1.2.1.1
Escribe como una fracción con un denominador común.
Paso 4.1.2.1.2
Combina los numeradores sobre el denominador común.
Paso 4.1.2.1.3
Resta de .
Paso 4.1.2.1.4
Reescribe como .
Paso 4.1.2.1.5
Cualquier raíz de es .
Paso 4.1.2.1.6
Simplifica el denominador.
Paso 4.1.2.1.6.1
Reescribe como .
Paso 4.1.2.1.6.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 4.1.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.2.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 4.1.2.3.1
Multiplica por .
Paso 4.1.2.3.2
Multiplica por .
Paso 4.1.2.4
Combina los numeradores sobre el denominador común.
Paso 4.1.2.5
Suma y .
Paso 4.2
Evalúa en .
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Paso 4.2.2.1
Simplifica cada término.
Paso 4.2.2.1.1
Multiplica por .
Paso 4.2.2.1.2
Resta de .
Paso 4.2.2.1.3
Reescribe como .
Paso 4.2.2.1.4
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 4.2.2.2
Suma y .
Paso 4.3
Enumera todos los puntos.
Paso 5