Cálculo Ejemplos

Hallar los puntos críticos y=x+sin(x)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
La derivada de con respecto a es .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Resta de ambos lados de la ecuación.
Paso 2.3
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 2.4
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.4.1
El valor exacto de es .
Paso 2.5
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Paso 2.6
Resta de .
Paso 2.7
Obtén el período de .
Toca para ver más pasos...
Paso 2.7.1
El período de la función puede calcularse mediante .
Paso 2.7.2
Reemplaza con en la fórmula para el período.
Paso 2.7.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 2.7.4
Divide por .
Paso 2.8
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.2.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 4.1.2.1.2
El valor exacto de es .
Paso 4.1.2.2
Suma y .
Paso 4.2
Evalúa en .
Toca para ver más pasos...
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.2.1.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 4.2.2.1.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 4.2.2.1.3
El valor exacto de es .
Paso 4.2.2.2
Suma y .
Paso 4.3
Evalúa en .
Toca para ver más pasos...
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica.
Toca para ver más pasos...
Paso 4.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.3.2.1.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 4.3.2.1.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 4.3.2.1.3
El valor exacto de es .
Paso 4.3.2.2
Suma y .
Paso 4.4
Evalúa en .
Toca para ver más pasos...
Paso 4.4.1
Sustituye por .
Paso 4.4.2
Simplifica.
Toca para ver más pasos...
Paso 4.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.4.2.1.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 4.4.2.1.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 4.4.2.1.3
El valor exacto de es .
Paso 4.4.2.2
Suma y .
Paso 4.5
Evalúa en .
Toca para ver más pasos...
Paso 4.5.1
Sustituye por .
Paso 4.5.2
Simplifica.
Toca para ver más pasos...
Paso 4.5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.5.2.1.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 4.5.2.1.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 4.5.2.1.3
El valor exacto de es .
Paso 4.5.2.2
Suma y .
Paso 4.6
Enumera todos los puntos.
Paso 5