Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.2.2
Reescribe como .
Paso 1.1.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3.3
Reemplaza todos los casos de con .
Paso 1.1.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.6
Multiplica los exponentes en .
Paso 1.1.2.6.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.1.2.6.2
Multiplica por .
Paso 1.1.2.7
Multiplica por .
Paso 1.1.2.8
Eleva a la potencia de .
Paso 1.1.2.9
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.2.10
Resta de .
Paso 1.1.2.11
Multiplica por .
Paso 1.1.2.12
Multiplica por .
Paso 1.1.2.13
Suma y .
Paso 1.1.3
Simplifica.
Paso 1.1.3.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.1.3.2
Combina y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Obtén el mcd de los términos en la ecuación.
Paso 2.2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 2.3
Multiplica cada término en por para eliminar las fracciones.
Paso 2.3.1
Multiplica cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Paso 2.3.2.1
Simplifica cada término.
Paso 2.3.2.1.1
Multiplica por sumando los exponentes.
Paso 2.3.2.1.1.1
Mueve .
Paso 2.3.2.1.1.2
Multiplica por .
Paso 2.3.2.1.1.2.1
Eleva a la potencia de .
Paso 2.3.2.1.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.2.1.1.3
Suma y .
Paso 2.3.2.1.2
Cancela el factor común de .
Paso 2.3.2.1.2.1
Cancela el factor común.
Paso 2.3.2.1.2.2
Reescribe la expresión.
Paso 2.3.3
Simplifica el lado derecho.
Paso 2.3.3.1
Multiplica por .
Paso 2.4
Resuelve la ecuación.
Paso 2.4.1
Resta de ambos lados de la ecuación.
Paso 2.4.2
Divide cada término en por y simplifica.
Paso 2.4.2.1
Divide cada término en por .
Paso 2.4.2.2
Simplifica el lado izquierdo.
Paso 2.4.2.2.1
Cancela el factor común de .
Paso 2.4.2.2.1.1
Cancela el factor común.
Paso 2.4.2.2.1.2
Divide por .
Paso 2.4.2.3
Simplifica el lado derecho.
Paso 2.4.2.3.1
Divide por .
Paso 2.4.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.4.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.4.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.4.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.5
Excluye las soluciones que no hagan que sea verdadera.
Paso 3
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos
Paso 4
Paso 4.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4.2
Resuelve
Paso 4.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4.2.2
Simplifica .
Paso 4.2.2.1
Reescribe como .
Paso 4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales.
Paso 5
Después de buscar el punto que hace que la derivada sea igual a o indefinida, el intervalo para verificar dónde está aumentando y dónde está disminuyendo es .
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Multiplica por .
Paso 6.2.1.2
Eleva a la potencia de .
Paso 6.2.1.3
Divide por .
Paso 6.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Multiplica por .
Paso 7.2.1.2
Uno elevado a cualquier potencia es uno.
Paso 7.2.1.3
Divide por .
Paso 7.2.2
Suma y .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 8
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 9