Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Multiplica por .
Paso 1.1.3
Diferencia con la regla de la constante.
Paso 1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza el lado izquierdo de la ecuación.
Paso 2.2.1
Factoriza de .
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Factoriza de .
Paso 2.2.1.3
Factoriza de .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Factoriza.
Paso 2.2.3.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 2.2.3.2
Elimina los paréntesis innecesarios.
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a .
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resta de ambos lados de la ecuación.
Paso 2.6
Establece igual a y resuelve .
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Suma a ambos lados de la ecuación.
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Simplifica cada término.
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.1.3
Multiplica por .
Paso 5.2.2
Suma y .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 6.2.1.1.1
Aplica la regla del producto a .
Paso 6.2.1.1.2
Aplica la regla del producto a .
Paso 6.2.1.2
Eleva a la potencia de .
Paso 6.2.1.3
Uno elevado a cualquier potencia es uno.
Paso 6.2.1.4
Eleva a la potencia de .
Paso 6.2.1.5
Cancela el factor común de .
Paso 6.2.1.5.1
Mueve el signo menos inicial en al numerador.
Paso 6.2.1.5.2
Factoriza de .
Paso 6.2.1.5.3
Cancela el factor común.
Paso 6.2.1.5.4
Reescribe la expresión.
Paso 6.2.1.6
Mueve el negativo al frente de la fracción.
Paso 6.2.1.7
Cancela el factor común de .
Paso 6.2.1.7.1
Mueve el signo menos inicial en al numerador.
Paso 6.2.1.7.2
Factoriza de .
Paso 6.2.1.7.3
Cancela el factor común.
Paso 6.2.1.7.4
Reescribe la expresión.
Paso 6.2.1.8
Multiplica por .
Paso 6.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.2.3
Combina y .
Paso 6.2.4
Combina los numeradores sobre el denominador común.
Paso 6.2.5
Simplifica el numerador.
Paso 6.2.5.1
Multiplica por .
Paso 6.2.5.2
Suma y .
Paso 6.2.6
La respuesta final es .
Paso 6.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Aplica la regla del producto a .
Paso 7.2.1.2
Uno elevado a cualquier potencia es uno.
Paso 7.2.1.3
Eleva a la potencia de .
Paso 7.2.1.4
Cancela el factor común de .
Paso 7.2.1.4.1
Factoriza de .
Paso 7.2.1.4.2
Cancela el factor común.
Paso 7.2.1.4.3
Reescribe la expresión.
Paso 7.2.1.5
Cancela el factor común de .
Paso 7.2.1.5.1
Factoriza de .
Paso 7.2.1.5.2
Cancela el factor común.
Paso 7.2.1.5.3
Reescribe la expresión.
Paso 7.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2.3
Combina y .
Paso 7.2.4
Combina los numeradores sobre el denominador común.
Paso 7.2.5
Simplifica el numerador.
Paso 7.2.5.1
Multiplica por .
Paso 7.2.5.2
Resta de .
Paso 7.2.6
Mueve el negativo al frente de la fracción.
Paso 7.2.7
La respuesta final es .
Paso 7.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Paso 8.2.1
Simplifica cada término.
Paso 8.2.1.1
Eleva a la potencia de .
Paso 8.2.1.2
Multiplica por .
Paso 8.2.1.3
Multiplica por .
Paso 8.2.2
Resta de .
Paso 8.2.3
La respuesta final es .
Paso 8.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 9
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 10