Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas f(x)=(x-1)/(x^2+3)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 1.1.2
Diferencia.
Toca para ver más pasos...
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.4
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.1.2.4.1
Suma y .
Paso 1.1.2.4.2
Multiplica por .
Paso 1.1.2.5
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.8
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.1.2.8.1
Suma y .
Paso 1.1.2.8.2
Multiplica por .
Paso 1.1.3
Simplifica.
Toca para ver más pasos...
Paso 1.1.3.1
Aplica la propiedad distributiva.
Paso 1.1.3.2
Aplica la propiedad distributiva.
Paso 1.1.3.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.1.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.3.3.1.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.1.3.3.1.1.1
Mueve .
Paso 1.1.3.3.1.1.2
Multiplica por .
Paso 1.1.3.3.1.2
Multiplica por .
Paso 1.1.3.3.2
Resta de .
Paso 1.1.3.4
Reordena los términos.
Paso 1.1.3.5
Factoriza por agrupación.
Toca para ver más pasos...
Paso 1.1.3.5.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 1.1.3.5.1.1
Factoriza de .
Paso 1.1.3.5.1.2
Reescribe como más
Paso 1.1.3.5.1.3
Aplica la propiedad distributiva.
Paso 1.1.3.5.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 1.1.3.5.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 1.1.3.5.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 1.1.3.5.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 1.1.3.6
Factoriza de .
Paso 1.1.3.7
Reescribe como .
Paso 1.1.3.8
Factoriza de .
Paso 1.1.3.9
Reescribe como .
Paso 1.1.3.10
Mueve el negativo al frente de la fracción.
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 2.3.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.3.2
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.3.2.1
Establece igual a .
Paso 2.3.2.2
Resta de ambos lados de la ecuación.
Paso 2.3.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 2.3.3.1
Establece igual a .
Paso 2.3.3.2
Suma a ambos lados de la ecuación.
Paso 2.3.4
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 5
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.1.1
Suma y .
Paso 5.2.1.2
Resta de .
Paso 5.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 5.2.2.1
Eleva a la potencia de .
Paso 5.2.2.2
Suma y .
Paso 5.2.2.3
Eleva a la potencia de .
Paso 5.2.3
Multiplica por .
Paso 5.2.4
La respuesta final es .
Paso 5.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 6
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.2.1.1
Suma y .
Paso 6.2.1.2
Resta de .
Paso 6.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 6.2.2.1
Uno elevado a cualquier potencia es uno.
Paso 6.2.2.2
Suma y .
Paso 6.2.2.3
Eleva a la potencia de .
Paso 6.2.3
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Paso 6.2.3.1
Multiplica por .
Paso 6.2.3.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 6.2.3.2.1
Factoriza de .
Paso 6.2.3.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 6.2.3.2.2.1
Factoriza de .
Paso 6.2.3.2.2.2
Cancela el factor común.
Paso 6.2.3.2.2.3
Reescribe la expresión.
Paso 6.2.3.3
Mueve el negativo al frente de la fracción.
Paso 6.2.4
La respuesta final es .
Paso 6.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 7
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.2.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.2.1.1
Suma y .
Paso 7.2.1.2
Resta de .
Paso 7.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 7.2.2.1
Eleva a la potencia de .
Paso 7.2.2.2
Suma y .
Paso 7.2.2.3
Eleva a la potencia de .
Paso 7.2.3
Multiplica por .
Paso 7.2.4
La respuesta final es .
Paso 7.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 9