Cálculo Ejemplos

Hallar el máximo y mínimo absoluto del intervalo f(x)=2x^3+3x^2-36x+7 , (-3,6)
,
Paso 1
Obtén los puntos críticos.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Multiplica por .
Paso 1.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.1.4
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.4.3
Multiplica por .
Paso 1.1.1.5
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.5.2
Suma y .
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.2.2.1
Factoriza de .
Toca para ver más pasos...
Paso 1.2.2.1.1
Factoriza de .
Paso 1.2.2.1.2
Factoriza de .
Paso 1.2.2.1.3
Factoriza de .
Paso 1.2.2.1.4
Factoriza de .
Paso 1.2.2.1.5
Factoriza de .
Paso 1.2.2.2
Factoriza.
Toca para ver más pasos...
Paso 1.2.2.2.1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 1.2.2.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 1.2.2.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 1.2.2.2.2
Elimina los paréntesis innecesarios.
Paso 1.2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 1.2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 1.2.4.1
Establece igual a .
Paso 1.2.4.2
Suma a ambos lados de la ecuación.
Paso 1.2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 1.2.5.1
Establece igual a .
Paso 1.2.5.2
Resta de ambos lados de la ecuación.
Paso 1.2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 1.3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 1.4.1
Evalúa en .
Toca para ver más pasos...
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
Simplifica.
Toca para ver más pasos...
Paso 1.4.1.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.1.2.1.1
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.4.1.2.1.1.1
Multiplica por .
Toca para ver más pasos...
Paso 1.4.1.2.1.1.1.1
Eleva a la potencia de .
Paso 1.4.1.2.1.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.1.2.1.1.2
Suma y .
Paso 1.4.1.2.1.2
Eleva a la potencia de .
Paso 1.4.1.2.1.3
Eleva a la potencia de .
Paso 1.4.1.2.1.4
Multiplica por .
Paso 1.4.1.2.1.5
Multiplica por .
Paso 1.4.1.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 1.4.1.2.2.1
Suma y .
Paso 1.4.1.2.2.2
Resta de .
Paso 1.4.1.2.2.3
Suma y .
Paso 1.4.2
Evalúa en .
Toca para ver más pasos...
Paso 1.4.2.1
Sustituye por .
Paso 1.4.2.2
Simplifica.
Toca para ver más pasos...
Paso 1.4.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.2.2.1.1
Eleva a la potencia de .
Paso 1.4.2.2.1.2
Multiplica por .
Paso 1.4.2.2.1.3
Eleva a la potencia de .
Paso 1.4.2.2.1.4
Multiplica por .
Paso 1.4.2.2.1.5
Multiplica por .
Paso 1.4.2.2.2
Simplifica mediante la adición de números.
Toca para ver más pasos...
Paso 1.4.2.2.2.1
Suma y .
Paso 1.4.2.2.2.2
Suma y .
Paso 1.4.2.2.2.3
Suma y .
Paso 1.4.3
Enumera todos los puntos.
Paso 2
Excluye los puntos que no están en el intervalo.
Paso 3
Usa la prueba de la primera derivada para determinar qué puntos pueden ser máximos o mínimos.
Toca para ver más pasos...
Paso 3.1
Divide en intervalos separados alrededor de los valores de que hacen que la primera derivada sea o indefinida.
Paso 3.2
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Toca para ver más pasos...
Paso 3.2.1
Reemplaza la variable con en la expresión.
Paso 3.2.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.2.1.1
Eleva a la potencia de .
Paso 3.2.2.1.2
Multiplica por .
Paso 3.2.2.1.3
Multiplica por .
Paso 3.2.2.2
Simplifica mediante la resta de números.
Toca para ver más pasos...
Paso 3.2.2.2.1
Resta de .
Paso 3.2.2.2.2
Resta de .
Paso 3.2.2.3
La respuesta final es .
Paso 3.3
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Toca para ver más pasos...
Paso 3.3.1
Reemplaza la variable con en la expresión.
Paso 3.3.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.3.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 3.3.2.1.2
Multiplica por .
Paso 3.3.2.1.3
Multiplica por .
Paso 3.3.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 3.3.2.2.1
Suma y .
Paso 3.3.2.2.2
Resta de .
Paso 3.3.2.3
La respuesta final es .
Paso 3.4
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Toca para ver más pasos...
Paso 3.4.1
Reemplaza la variable con en la expresión.
Paso 3.4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.4.2.1.1
Eleva a la potencia de .
Paso 3.4.2.1.2
Multiplica por .
Paso 3.4.2.1.3
Multiplica por .
Paso 3.4.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 3.4.2.2.1
Suma y .
Paso 3.4.2.2.2
Resta de .
Paso 3.4.2.3
La respuesta final es .
Paso 3.5
Como la primera derivada cambió los signos de positivo a negativo alrededor de , es un máximo local.
es un máximo local
Paso 3.6
Como la primera derivada cambió los signos de negativo a positivo alrededor de , es un mínimo local.
es un mínimo local
Paso 3.7
Estos son los extremos locales de .
es un máximo local
es un mínimo local
es un máximo local
es un mínimo local
Paso 4
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Sin máximo absoluto
Mínimo absoluto:
Paso 5