Cálculo Ejemplos

Hallar la recta tangente horizontal f(x)=5x^2-4x+3
Paso 1
Obtén la derivada.
Toca para ver más pasos...
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Suma y .
Paso 2
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Suma a ambos lados de la ecuación.
Paso 2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.3.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.2.3.1.1
Factoriza de .
Paso 2.2.3.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.2.3.1.2.1
Factoriza de .
Paso 2.2.3.1.2.2
Cancela el factor común.
Paso 2.2.3.1.2.3
Reescribe la expresión.
Paso 3
Resuelve la función original en .
Toca para ver más pasos...
Paso 3.1
Reemplaza la variable con en la expresión.
Paso 3.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1.1
Aplica la regla del producto a .
Paso 3.2.1.2
Eleva a la potencia de .
Paso 3.2.1.3
Eleva a la potencia de .
Paso 3.2.1.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.4.1
Factoriza de .
Paso 3.2.1.4.2
Cancela el factor común.
Paso 3.2.1.4.3
Reescribe la expresión.
Paso 3.2.1.5
Multiplica .
Toca para ver más pasos...
Paso 3.2.1.5.1
Combina y .
Paso 3.2.1.5.2
Multiplica por .
Paso 3.2.1.6
Mueve el negativo al frente de la fracción.
Paso 3.2.2
Combina fracciones.
Toca para ver más pasos...
Paso 3.2.2.1
Combina los numeradores sobre el denominador común.
Paso 3.2.2.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 3.2.2.2.1
Resta de .
Paso 3.2.2.2.2
Mueve el negativo al frente de la fracción.
Paso 3.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.2.4
Combina y .
Paso 3.2.5
Combina los numeradores sobre el denominador común.
Paso 3.2.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.2.6.1
Multiplica por .
Paso 3.2.6.2
Resta de .
Paso 3.2.7
La respuesta final es .
Paso 4
La tangente horizontal en la función es .
Paso 5